Skip to main content

Assistive Gait Wearable Robots—From the Laboratory to the Real Environment

  • Chapter
  • First Online:
Book cover Reinventing Mechatronics

Abstract

In recent decades, researchers have been able to develop intelligent assistive gait wearable robots (AGWR) capable of assisting humans in their activities of daily living (ADLs). These wearable robots have been developed to assist adults and elderly with mobility impairments, but also, to support children with motor disorders as a consequence of diseases. The reason for the rapid progress in AGWR is the advances in materials, sensor technology and computational intelligence achieved in laboratories across the globe. Unfortunately, despite the scientific and technological achievements, there exist many challenges that need to be overcome about the design, development and functionality of assistive robots. Also, there exist challenges in terms of computational intelligence methods, which are needed to make the assistive systems robust and reliable to work in indoor and outdoor environments, and on different terrains. These limitations along with lack of AGWR adaptability to the user affect the performance of wearable assistive robots, but also they reduce the acceptance, confidence and satisfaction of the individuals to wear the assistive robot on a daily basis. This chapter presents a description of wearable assistive devices, sensor technology and computational methods employed for activity recognition and robot control. Furthermore, the description of the essential parameters to achieve the user satisfaction, acceptance and usability of assistive robots is presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Qualisys AB, Sweden.

  2. 2.

    Watertown, MA, USA.

References

  1. Beauchet, O., Annweiler, C., Callisaya, M. L., De Cock, A.-M,, Helbostad, J. L., Kressig, R. W., et al. (2106). Poor gait performance and prediction of dementia: results from a meta-analysis. Journal of the American Medical Directors Association, 17, 482–490.

    Google Scholar 

  2. Cohen, J. A., Verghese, J., & Zwerling, J. L. (2016). Cognition and gait in older people. Maturitas, 93, 73–77.

    Article  Google Scholar 

  3. Calderón-Garcidueñas, L., Mora-Tiscareño, A., Ontiveros, E., Gómez-Garza, G., Barragán-Mejía, G., Broadway, J., et al. (2008). Air pollution, cognitive deficits and brain abnormalities: A pilot study with children and dogs. Brain and Cognition, 68, 117–127.

    Article  Google Scholar 

  4. Harada, M. (1995). Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Critical Reviews in Toxicology, 25, 1–24.

    Article  MathSciNet  Google Scholar 

  5. Burgar, C. G., Lum, P. S., Shor, P. C., & Van der Loos, H. M. (2000). Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience. Journal of Rehabilitation Research and Development, 37, 663–674.

    Google Scholar 

  6. Huisinga, J. M., St George, R. J., Spain, R., Overs, S., & Horak, F. B. (2014). Postural Response Latencies Are Related to Balance Control During Standing and Walking in Patients With Multiple Sclerosis. Archives of Physical Medicine and Rehabilitation, 95, 1390–1397.

    Article  Google Scholar 

  7. Horak, F. B. (2006). Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age and Aging, 35, ii7–ii11.

    Article  Google Scholar 

  8. Winter, D. A. (2009). Biomechanics and Motor Control of Human Movement (4th edn.). Wiley.

    Google Scholar 

  9. Zajac, F. E., Neptune, R. R., & Kautz, S. A. (2003). Biomechanics and muscle coordination of human walking: Part II: Lessons from dynamical simulations and clinical implications. Gait & Posture, 17, 1–17.

    Article  Google Scholar 

  10. Herr, H. (2009). Exoskeletons and orthoses: Classification, design challenges and future directions,”. Journal of NeuroEngineering and Rehabilitation, 6, 21–30.

    Article  Google Scholar 

  11. Alireza, A., Martinez-Hernandez, U., Awad, M. I., Bradley, D. A., Dehghani-Sanij, A. A. (2018). Human-activity-centered measurement system: challenges from laboratory to the real environment in assistive gait wearable robotics. In 16th Mechatronics Forum International Conference (pp. 38–43). University of Strathclyde Publishing.

    Google Scholar 

  12. Allard, P., Stokes, I. A., & Blanchi, J.-P. (1995). Three-dimensional analysis of human movement, Human Kinetics Publishers.

    Google Scholar 

  13. Sutherland, D. H. (2002). The evolution of clinical gait analysis: Part II Kinematics. Gait & Posture, 16, 159–179.

    Article  Google Scholar 

  14. Patel, S., Park, H., Bonato, P., Chan, L., & Rodgers, M. (2012). A review of wearable sensors and systems with application in rehabilitation. Journal of NeuroEngineering and Rehabilitation, 9, 21–38.

    Article  Google Scholar 

  15. Liu, T., Inoue, Y., & Shibata, K. (2009). Development of a wearable sensor system for quantitative gait analysis. Measurement, 42, 978–988.

    Article  Google Scholar 

  16. Martinez-Hernandez, U., & Dehghani-Sanij, A. A. (2018). Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors. Neural Networks, 102, 107–119.

    Article  Google Scholar 

  17. Maqbool, H. F., Muhammad, A. B. F., Awad, M. I., Abouhossein, A., Iqbal, N., & Dehghani-Sanij, A. A. (2017). A real-time gait event detection for lower limb prosthesis control and evaluation. IEEE Transactions Neural Systems & Rehabilitation Engineering, 25, 1500–1509.

    Article  Google Scholar 

  18. Chen, B., Ma, H., Qin, L. Y., Gao, F., Chan, K. M., Law, S. W., et al. (2016). Recent developments and challenges of lower extremity exoskeletons. Journal of Orthopaedic Translation, 5, 26–37.

    Article  Google Scholar 

  19. Esquenazi, A., Talaty, M., Packel, A., & Saulino, M. (2012). The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. American Journal of Physical Medicine & Rehabilitation, 91, 911–921.

    Article  Google Scholar 

  20. Talaty, M., Esquenazi, A., & Briceno, J. E. (2013). Differentiating Ability in Users of the ReWalk (TM) Powered Exoskeleton An Analysis of Walking Kinematics. In 13th IEEE International Conference on Rehabilitation Robotics (ICORR) (pp. 1–5). Seattle.

    Google Scholar 

  21. Farris, R. J., Quintero, H. A., Murray, S. A., Ha, K. H., Hartigan, C., & Goldfarb, M. (2014). A Preliminary Assessment of Legged Mobility Provided by a Lower Limb Exoskeleton for Persons With Paraplegia. IEEE Transactions Neural Systems & Rehabilitation Engineering, 22, 482–490.

    Article  Google Scholar 

  22. Farris, R. J., Quintero, H. A., Withrow, T. J., & Goldfarb, M. (2009). Design of a joint-coupled orthosis for FES-aided gait (pp. 246–252). Kyoto: International Conference on Rehabilitation Robotics.

    Google Scholar 

  23. Murray, S. A., Ha, K. H., Hartigan, C., & Goldfarb, M. (2015). An Assistive Control Approach for a Lower-Limb Exoskeleton to Facilitate Recovery of Walking Following Stroke. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 23, 441–449.

    Google Scholar 

  24. Ha, K. H., Murray, S. A., & Goldfarb, M. (2016). An Approach for the Cooperative Control of FES With a Powered Exoskeleton During Level Walking for Persons With Paraplegia. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 24, 455–466.

    Article  Google Scholar 

  25. Lajeunesse, V., Vincent, C., Routhier, F., Careau, E., & Michaud, F. (2016). Exoskeletons’ design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disability & Rehabilitation: Assistive Technology, 11, 535–547.

    Google Scholar 

  26. REX Bionics. (2017). Robot for Rehabilitation: Exercising, Walking and Standing. @ www.rexbionics.com. Accessed May 20, 2019.

  27. Sankai, Y. (2010). HAL: Hybrid assistive limb based on cybernics. Robotics Research, 66, 25–34.

    Article  Google Scholar 

  28. Sanz-Merodio, D., Cestari, M., Arevalo, J. C. & Garcia, E. (2012). A lower-limb exoskeleton for gait assistance in quadriplegia. In IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 122–127). Guangzhou.

    Google Scholar 

  29. Sancho-Perez, J., Perez, M., Garcia, E., Sanz-Merodio, D., Plaza, A., Cestari, M.: Mechanical Description of ATLAS 2020, A 10-DOF Paediatric Exoskeleton, Advances in Cooperative Robotics, 814–822 (2017).

    Google Scholar 

  30. Sanz-Merodio, D., Sancho, J., Perez, M., & Garcia, E. (2016). Control architecture of the ATLAS 2020 lower-limb active orthosis. In Advances in Cooperative Robotics, Proceeding of 19th CLAWAR International Conference (pp. 860–868). London,

    Google Scholar 

  31. Rossi, S., Patanè, F., Sette, F. D., Cappa, P. (2014). WAKE-up: A wearable ankle knee exoskeleton. In: 5th IEEE RAS/EMBS International Conference Biomedical Robotics & Biomechatronics (pp. 504–507), Sao Paulo.

    Google Scholar 

  32. Patane, F., Rossi, S., Sette, F. D., Taborri, J., & Cappa, P. (2017). WAKE-up exoskeleton to assist children with Cerebral Palsy: design and preliminary evaluation in level walking. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 25, 906–916.

    Article  Google Scholar 

  33. Lusardi, M. M., Nielsen, C. C., Emery, M. J., Bowers, D. M., & Vaughan, V. G. (2007). Orthotics and Prosthetics in Rehabilitation (2nd ed). Elsevier.

    Google Scholar 

  34. Inman, V. T. (1966). Human locomotion. Canadian Medical Association Journal, 94(20), 1047–1054.

    Google Scholar 

  35. Franceschini, M., Massucci, M., Ferrari, L., Agosti, M., & Paroli, C. (2003). Effects of an ankle-foot orthosis on spatiotemporal parameters and energy cost of hemiparetic gait. Clinical Rehabilitation, 17, 368–372.

    Article  Google Scholar 

  36. Traballesi, M., Porcacchia, P., Averna, T., & Brunelli, S. (2008). Energy cost of walking measurements in subjects with lower limb amputations: a comparison study between floor and treadmill test. Gait & Posture, 27, 70–75.

    Article  Google Scholar 

  37. Vrieling, A. H., van Keeken, H. G., Schoppen, T., Hof, A. L., Otten, B., Halbertsma, J. P. K., et al. (2009). Gait adjustments in obstacle crossing, gait initiation and gait termination after a recent lower limb amputation. Clinical Rehabilitation, 23, 659–671.

    Article  Google Scholar 

  38. Sapp, L., & Little, C. (1995). Functional outcomes in a lower limb amputee population. Prosthetics and Orthotics International, 19, 92–96.

    Google Scholar 

  39. Bruijn, S., Meijer, O., Beek, P., & Van Dieën, J. (2013). Assessing the stability of human locomotion: a review of current measures. Journal of the Royal Society Interface, 10(83), 1–20.

    Article  Google Scholar 

  40. Mahmood, I., Martinez, Hernandez, U., & Dehghani-Sanij, A. A. (2018). Gait dynamic stability analysis for simulated Ankle-foot impairments and Bipedal robotics application. In 16th Mechatronics Forum International Conference (pp. 58–64). Strathclyde.

    Google Scholar 

  41. Sadeghi, H., Allard, P., Prince, F., & Labelle, H. (2000). Symmetry and limb dominance in able-bodied gait: A review. Gait & Posture, 12(1), 34–45.

    Article  Google Scholar 

  42. Andres, R., & Stimmel, S. (1990). Prosthetic alignment effects on gait symmetry: A case study. Clinical Biomechanics, 5(2), 88–96.

    Article  Google Scholar 

  43. Cabral, S., Resende, R. A., Clansey, A. C., Deluzio, K. J., Selbie, W. S., & Veloso, A. P. (2016). A global gait asymmetry index. Journal of applied biomechanics, 32(2), 171–177.

    Google Scholar 

  44. Martinez-Hernandez, U., Mahmood, I., & Dehghani-Sanij, A. A. (2017). Simultaneous bayesian recognition of locomotion and gait phases with wearable sensors. IEEE Sensors Journal, 18(3), 1282–1290.

    Article  Google Scholar 

  45. Varol, H. A., Sup, F., & Goldfarb, M. (2010). Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Trans. Biomedical Engineering, 57(3), 542–551.

    Article  Google Scholar 

  46. Jimenez-Fabian, R., & Verlinden, O. (2012). Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Medical Engineering & Physics, 34(4), 397–408.

    Article  Google Scholar 

  47. Martinez-Hernandez, U., & Dehghani-Sanij, A. A. (2018). Probabilistic identification of sit-to-stand and stand-to-sit with a wearable sensor. Pattern Recognition Letters, 118, 32–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas A. Dehghani-Sanij .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abouhossein, A., Martinez-Hernandez, U., Awad, M.I., Mahmood, I., Yilmaz, D., Dehghani-Sanij, A.A. (2020). Assistive Gait Wearable Robots—From the Laboratory to the Real Environment. In: Yan, XT., Bradley, D., Russell, D., Moore, P. (eds) Reinventing Mechatronics. Springer, Cham. https://doi.org/10.1007/978-3-030-29131-0_6

Download citation

Publish with us

Policies and ethics