Skip to main content

Treatment of Drug-Sensitive Tuberculosis in Persons with HIV

  • Chapter
  • First Online:
  • 423 Accesses

Abstract

Tuberculosis (TB) is the most common opportunistic infection and the leading cause of death in patients with human immunodeficiency virus (HIV) worldwide. Persons with advanced HIV infection and those not on antiretroviral therapy (ART) are at highest risks of morbidity and mortality. Thus, early diagnosis and treatment of both HIV and TB are keys to treatment success. Concurrent treatment of both infections can be challenging due to high pill burden, overlapping toxicities, drug interactions, adherence concerns, and the potential of immune reconstitution inflammatory syndrome. This chapter provides an overview of treatment regimens and duration of therapy for drug-susceptible TB, management of adverse drug reactions, monitoring parameters, adherence interventions, and appropriate timing for ART initiation in this patient population.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. WHO. Global Tuberculosis Report - 2017. 2017 January 1, 2018]; Available from: http://www.who.int/tb/publications/global_report/en/

  2. Bisson GP, Zetola N, Collman RG (2015) Persistent high mortality in advanced HIV/TB despite appropriate antiretroviral and antitubercular therapy: an emerging challenge. Curr HIV/AIDS Rep 12(1):107–116

    PubMed  PubMed Central  Google Scholar 

  3. Nahid P et al (2016) Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin Infect Dis 63(7):e147–e195

    PubMed  PubMed Central  Google Scholar 

  4. WHO. Guidelines for treatment of drug-susceptible tuberculosis and patient care (2017 update). 2017 January 1, 2018; Available from: http://www.who.int/tb/publications/2017/dstb_guidance_2017/en/

  5. Panel on Opportunistic Infections in HIV-Infected Adults and Adolescents. Guidelines for the prevention and treatment of opportunistic infections in HIV-infected adults and adolescents:recommendations from the Centers for Disease Control and Prevention, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. 2017 December 10, 2017 January 1, 2018]; Available from: http://aidsinfo.nih.gov/contentfiles/lvguidelines/adult_oi.pdf

  6. WHO. Improving the diagnosis and treatment smear-negative pulmonary and extrapulmonary tuberculosis among adults and adolescents. Recommendations for HIV-prevalent and resource-constrained settings. . 2007 January 1, 2018; Available from: http://whqlibdoc.who.int/hq/2007/WHO_HTM_TB_2007.379_eng.pdf

  7. Padmapriyadarsini C et al (2013) Evaluation of a diagnostic algorithm for sputum smear-negative pulmonary tuberculosis in HIV-infected adults. J Acquir Immune Defic Syndr 63(3):331–338

    PubMed  Google Scholar 

  8. Wilson D et al (2011) Evaluation of the World Health Organization algorithm for the diagnosis of HIV-associated sputum smear-negative tuberculosis. Int J Tuberc Lung Dis 15(7):919–924

    CAS  PubMed  Google Scholar 

  9. Griesel R et al (2017) Optimizing tuberculosis diagnosis in HIV-infected inpatients meeting the criteria of seriously ill in the WHO algorithm. Clin Infect Dis

    Google Scholar 

  10. Mitnick CD, McGee B, Peloquin CA (2009) Tuberculosis pharmacotherapy: strategies to optimize patient care. Expert Opin Pharmacother 10(3):381–401

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Khan FA et al (2010) Treatment of active tuberculosis in HIV-coinfected patients: a systematic review and meta-analysis. Clin Infect Dis 50(9):1288–1299

    PubMed  Google Scholar 

  12. Swaminathan S et al (2010) Efficacy of a 6-month versus 9-month intermittent treatment regimen in HIV-infected patients with tuberculosis: a randomized clinical trial. Am J Respir Crit Care Med 181(7):743–751

    PubMed  Google Scholar 

  13. Perriens JH et al (1995) Pulmonary tuberculosis in HIV-infected patients in Zaire. A controlled trial of treatment for either 6 or 12 months. N Engl J Med 332(12):779–784

    CAS  PubMed  Google Scholar 

  14. Li J et al (2005) Relapse and acquired rifampin resistance in HIV-infected patients with tuberculosis treated with rifampin- or rifabutin-based regimens in New York City, 1997–2000. Clin Infect Dis 41(1):83–91

    CAS  PubMed  Google Scholar 

  15. Nettles RE et al (2004) Risk factors for relapse and acquired rifamycin resistance after directly observed tuberculosis treatment: a comparison by HIV serostatus and rifamycin use. Clin Infect Dis 38(5):731–736

    PubMed  Google Scholar 

  16. Vashishtha R et al (2013) Efficacy and safety of thrice weekly DOTS in tuberculosis patients with and without HIV co-infection: an observational study. BMC Infect Dis 13:468

    PubMed  PubMed Central  Google Scholar 

  17. Burman W et al (2006) Acquired rifamycin resistance with twice-weekly treatment of HIV-related tuberculosis. Am J Respir Crit Care Med 173(3):350–356

    CAS  PubMed  Google Scholar 

  18. Jo KW et al (2014) Risk factors for 1-year relapse of pulmonary tuberculosis treated with a 6-month daily regimen. Respir Med 108(4):654–659

    PubMed  Google Scholar 

  19. Horne DJ et al (2010) Sputum monitoring during tuberculosis treatment for predicting outcome: systematic review and meta-analysis. Lancet Infect Dis 10(6):387–394

    PubMed  PubMed Central  Google Scholar 

  20. Perwitasari DA, Atthobari J, Wilffert B (2015) Pharmacogenetics of isoniazid-induced hepatotoxicity. Drug Metab Rev 47(2):222–228

    CAS  PubMed  Google Scholar 

  21. Ohno M et al (2000) Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. Int J Tuberc Lung Dis 4(3):256–261

    CAS  PubMed  Google Scholar 

  22. Huang YS et al (2002) Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology 35(4):883–889

    CAS  PubMed  Google Scholar 

  23. Pasipanodya JG, Srivastava S, Gumbo T (2012) Meta-analysis of clinical studies supports the pharmacokinetic variability hypothesis for acquired drug resistance and failure of antituberculosis therapy. Clin Infect Dis 55(2):169–177

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chien JY et al (2014) Safety of rifabutin replacing rifampicin in the treatment of tuberculosis: a single-centre retrospective cohort study. J Antimicrob Chemother 69(3):790–796

    CAS  PubMed  Google Scholar 

  25. Vernon A et al (1999) Acquired rifamycin monoresistance in patients with HIV-related tuberculosis treated with once-weekly rifapentine and isoniazid. Tuberculosis Trials Consortium. Lancet 353(9167):1843–1847

    CAS  PubMed  Google Scholar 

  26. Savic RM et al (2017) Defining the optimal dose of rifapentine for pulmonary tuberculosis: exposure-response relations from two phase II clinical trials. Clin Pharmacol Ther 102(2):321–331

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dorman SE et al (2015) Daily rifapentine for treatment of pulmonary tuberculosis. A randomized, dose-ranging trial. Am J Respir Crit Care Med 191(3):333–343

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Boeree MJ et al (2017) High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect Dis 17(1):39–49

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Steingart KR et al (2011) Higher-dose rifampin for the treatment of pulmonary tuberculosis: a systematic review. Int J Tuberc Lung Dis 15(3):305–316

    CAS  PubMed  Google Scholar 

  30. Velasquez GE et al (2018) Efficacy and safety of high-dose rifampin in pulmonary tuberculosis. A randomized controlled trial. Am J Respir Crit Care Med 198(5):657–666

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Schimkat M et al (1996) Rifabutin-associated anterior uveitis in patients infected with human immunodeficiency virus. Ger J Ophthalmol 5(4):195–201

    CAS  PubMed  Google Scholar 

  32. Jacobs DS et al (1994) Acute uveitis associated with rifabutin use in patients with human immunodeficiency virus infection. Am J Ophthalmol 118(6):716–722

    CAS  PubMed  Google Scholar 

  33. Baciewicz AM et al (2013) Update on rifampin, rifabutin, and rifapentine drug interactions. Curr Med Res Opin 29(1):1–12

    CAS  PubMed  Google Scholar 

  34. Cremades R et al (2011) Comparison of the bactericidal activity of various fluoroquinolones against Mycobacterium tuberculosis in an in vitro experimental model. J Antimicrob Chemother 66(10):2281–2283

    CAS  PubMed  Google Scholar 

  35. Johnson JL et al (2006) Early and extended early bactericidal activity of levofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis. Int J Tuberc Lung Dis 10(6):605–612

    CAS  PubMed  Google Scholar 

  36. Pletz MW et al (2004) Early bactericidal activity of moxifloxacin in treatment of pulmonary tuberculosis: a prospective, randomized study. Antimicrob Agents Chemother 48(3):780–782

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gillespie SH et al (2014) Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med 371(17):1577–1587

    PubMed  PubMed Central  Google Scholar 

  38. Jawahar MS et al (2013) Randomized clinical trial of thrice-weekly 4-month moxifloxacin or gatifloxacin containing regimens in the treatment of new sputum positive pulmonary tuberculosis patients. PLoS One 8(7):e67030

    CAS  PubMed  PubMed Central  Google Scholar 

  39. WHO. WHO Treatment Guidelines for Drug-Resistant Tuberculosis (2016 Update). 2016 January 1, 2018; Available from: http://apps.who.int/iris/bitstream/10665/250125/1/9789241549639-eng.pdf?ua=1

  40. Gaude GS, Chaudhury A, Hattiholi J (2015) Drug-induced hepatitis and the risk factors for liver injury in pulmonary tuberculosis patients. J Family Med Prim Care 4(2):238–243

    PubMed  PubMed Central  Google Scholar 

  41. Abbara A et al (2017) Drug-induced liver injury from antituberculous treatment: a retrospective study from a large TB centre in the UK. BMC Infect Dis 17(1):231

    PubMed  PubMed Central  Google Scholar 

  42. Nader LA et al (2010) Hepatotoxicity due to rifampicin, isoniazid and pyrazinamide in patients with tuberculosis: is anti-HCV a risk factor? Ann Hepatol 9(1):70–74

    CAS  PubMed  Google Scholar 

  43. Dossing M et al (1996) Liver injury during antituberculosis treatment: an 11-year study. Tuber Lung Dis 77(4):335–340

    CAS  PubMed  Google Scholar 

  44. Lee AM et al (2002) Risk factors for hepatotoxicity associated with rifampin and pyrazinamide for the treatment of latent tuberculosis infection: experience from three public health tuberculosis clinics. Int J Tuberc Lung Dis 6(11):995–1000

    CAS  PubMed  Google Scholar 

  45. Shakya R, Rao BS, Shrestha B (2004) Incidence of hepatotoxicity due to antitubercular medicines and assessment of risk factors. Ann Pharmacother 38(6):1074–1079

    CAS  PubMed  Google Scholar 

  46. Crane M et al (2009) Immunopathogenesis of hepatic flare in HIV/hepatitis B virus (HBV)-coinfected individuals after the initiation of HBV-active antiretroviral therapy. J Infect Dis 199(7):974–981

    CAS  PubMed  Google Scholar 

  47. Reis-Santos B et al (2015) Directly observed therapy of tuberculosis in Brazil: associated determinants and impact on treatment outcome. Int J Tuberc Lung Dis 19(10):1188–1193

    CAS  PubMed  Google Scholar 

  48. Nguyen TA et al (2017) Video directly observed therapy to support adherence with treatment for tuberculosis in Vietnam: a prospective cohort study. Int J Infect Dis 65:85–89

    PubMed  Google Scholar 

  49. Macaraig M et al (2017) A national survey on the use of electronic directly observed therapy for treatment of tuberculosis. J Public Health Manag Pract

    Google Scholar 

  50. Kaplan R et al (2016) An integrated community TB-HIV adherence model provides an alternative to DOT for tuberculosis patients in Cape Town. Int J Tuberc Lung Dis 20(9):1185–1191

    CAS  PubMed  Google Scholar 

  51. Webb Mazinyo E et al (2016) Adherence to concurrent tuberculosis treatment and antiretroviral treatment among co-infected persons in South Africa, 2008–2010. PLoS One 11(7):e0159317

    PubMed  PubMed Central  Google Scholar 

  52. Hermans SM et al (2012) Integration of HIV and TB services results in improved TB treatment outcomes and earlier prioritized ART initiation in a large urban HIV clinic in Uganda. J Acquir Immune Defic Syndr 60(2):e29–e35

    PubMed  PubMed Central  Google Scholar 

  53. Egelund EF et al (2017) The pharmacological challenges of treating tuberculosis and HIV coinfections. Expert Rev Clin Pharmacol 10(2):213–223

    CAS  PubMed  Google Scholar 

  54. Kaplan R et al (2014) Impact of ART on TB case fatality stratified by CD4 count for HIV-positive TB patients in Cape Town, South Africa (2009–2011). J Acquir Immune Defic Syndr 66(5):487–494

    PubMed  PubMed Central  Google Scholar 

  55. WHO. Consolidated guidelines on HIV prevention, diagnosis, treatment and care for key populations - 2016 update. 2016 December 10, 2017 January 1, 2018; Available from: http://www.who.int/hiv/pub/arv/arv-2016/en/

  56. Havlir DV et al (2011) Timing of antiretroviral therapy for HIV-1 infection and tuberculosis. N Engl J Med 365(16):1482–1491

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Abdool Karim SS et al (2010) Timing of initiation of antiretroviral drugs during tuberculosis therapy. N Engl J Med 362(8):697–706

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Blanc FX et al (2011) Earlier versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis. N Engl J Med 365(16):1471–1481

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mfinanga SG et al (2014) Early versus delayed initiation of highly active antiretroviral therapy for HIV-positive adults with newly diagnosed pulmonary tuberculosis (TB-HAART): a prospective, international, randomised, placebo-controlled trial. Lancet Infect Dis 14(7):563–571

    PubMed  Google Scholar 

  60. Abdool Karim SS et al (2011) Integration of antiretroviral therapy with tuberculosis treatment. N Engl J Med 365(16):1492–1501

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Uthman OA et al (2015) Optimal timing of antiretroviral therapy initiation for HIV-infected adults with newly diagnosed pulmonary tuberculosis: a systematic review and meta-analysis. Ann Intern Med 163(1):32–39

    PubMed  Google Scholar 

  62. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents Living with HIV. Department of Health and Human Services. 2017 December 10, 2017 January 1, 2018]; Available from: https://aidsinfo.nih.gov/guidelines/html/1/adult-and-adolescent-arv/27/tb-hiv

  63. Torok ME et al (2011) Timing of initiation of antiretroviral therapy in human immunodeficiency virus (HIV)--associated tuberculous meningitis. Clin Infect Dis 52(11):1374–1383

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice K. Pau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pau, A.K., Kuriakose, S., Dooley, K.E., Maartens, G. (2019). Treatment of Drug-Sensitive Tuberculosis in Persons with HIV. In: Sereti, I., Bisson, G.P., Meintjes, G. (eds) HIV and Tuberculosis. Springer, Cham. https://doi.org/10.1007/978-3-030-29108-2_9

Download citation

Publish with us

Policies and ethics