Skip to main content

Co-treatment of Tuberculosis and HIV: Pharmacologic Considerations

  • Chapter
  • First Online:
Book cover HIV and Tuberculosis
  • 439 Accesses

Abstract

Having HIV and TB worsens the impact of both. The treatment of HIV-TB coinfection is beset by challenges, including drug-drug-interactions, coincident toxicities, and the occurrence of the immune reconstitution inflammatory syndrome. These challenges can be overcome with careful attention to evidence-guided practice and clinical pharmacological aspects of co-treatment. There is a clear mortality benefit to treating both infections; the relative timing of initiation of both treatments will be discussed. This chapter will address pharmacologic considerations in the co-treatment of HIV-related latent or active TB of all sensitivity patterns (drug sensitive and multidrug resistant (MDR). The discussion will identify existing gaps in the evidence and include current recommendations for HIV-TB treatment in special populations, including pregnant and lactating women and children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization (2017) Global Tuberculosis Report WHO/HTM/TB/2017.23

    Google Scholar 

  2. Golub JE, Pronyk P, Mohapi L, Thsabangu N, Moshabela M, Struthers H et al (2009) Isoniazid preventive therapy, HAART and tuberculosis risk in HIV-infected adults in South Africa: a prospective cohort. AIDS 23(5):631–6. https://doi.org/10.1097/QAD.0b013e328327964f

  3. Briggs MA, Emerson C, Modi S, Taylor NK, Date A (2015) Use of isoniazid preventive therapy for tuberculosis prophylaxis among people living with HIV/AIDS: a review of the literature. J Acquir Immune Defic Syndr 68(Suppl 3):297

    Article  CAS  Google Scholar 

  4. Ayele HT, Mourik MS, Debray TP, Bonten MJ (2015) Isoniazid prophylactic therapy for the prevention of tuberculosis in HIV infected adults: a systematic review and meta-analysis of randomized trials. PLoS One 10(11):e0142290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Nettles RE, Mazo D, Alwood K, Gachuhi R, Maltas G, Wendel K et al (2004) Risk factors for relapse and acquired rifamycin resistance after directly observed tuberculosis treatment: a comparison by HIV serostatus and rifamycin use. Clin Infect Dis 38(5):731–736

    Article  PubMed  Google Scholar 

  6. Li J, Munsiff SS, Driver CR, Sackoff J (2005) Relapse and acquired rifampin resistance in HIV-infected patients with tuberculosis treated with rifampin- or rifabutin-based regimens in New York City, 1997–2000. Clin Infect Dis 41(1):83–91

    Article  CAS  PubMed  Google Scholar 

  7. Burman W, Benator D, Vernon A, Khan A, Jones B, Silva C et al (2006) Acquired rifamycin resistance with twice-weekly treatment of HIV-related tuberculosis. Am J Respir Crit Care Med 173(3):350–356

    Article  CAS  PubMed  Google Scholar 

  8. Vernon A, Burman W, Benator D, Khan A, Bozeman L (1999) Acquired rifamycin monoresistance in patients with HIV-related tuberculosis treated with once-weekly rifapentine and isoniazid. Tuberculosis Trials Consortium. Lancet 353(9167):1843–1847

    Article  CAS  PubMed  Google Scholar 

  9. Chirehwa MT, Rustomjee R, Mthiyane T, Onyebujoh P, Smith P, McIlleron H et al (2015) Model-based evaluation of higher doses of rifampin using a semimechanistic model incorporating autoinduction and saturation of hepatic extraction. Antimicrob Agents Chemother 60(1):487–494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. McIlleron H, Rustomjee R, Vahedi M, Mthiyane T, Denti P, Connolly C et al (2012) Reduced antituberculosis drug concentrations in HIV-infected patients who are men or have low weight: implications for international dosing guidelines. Antimicrob Agents Chemother 56(6):3232–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Merle CS, Floyd S, Ndiaye A, Galperine T, Furco A, De Jong BC, et al. (2016) High-dose rifampicin tuberculosis treatment regimen to reduce 12-month mortality of TB/HIV co-infected patients: the RAFA trial results. AIDS 2016 Durban South Africa

    Google Scholar 

  12. McIlleron H, Meintjes G, Burman WJ, Maartens G (2007) Complications of antiretroviral therapy in patients with tuberculosis: drug interactions, toxicity, and immune reconstitution inflammatory syndrome. J Infect Dis 196(Suppl 1):63

    Article  Google Scholar 

  13. Abdool Karim SS, Naidoo K, Grobler A, Padayatchi N, Baxter C, Gray A et al (2010) Timing of initiation of antiretroviral drugs during tuberculosis therapy. N Engl J Med 362(8):697–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abdool Karim SS, Naidoo K, Grobler A, Padayatchi N, Baxter C, Gray AL et al (2011) Integration of antiretroviral therapy with tuberculosis. N Engl J Med 365:1492–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Havlir DV, Kendall MA, Ive P, Kumwenda J, Swindells S, Qasba SS et al (2011) Timing of antiretroviral therapy for HIV-1 infection and tuberculosis. N Engl J Med 365:1482–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blanc F, Sok T, Laureillard D, Borand L, Rekacewicz C, Nerrienet E et al (2011) Earlier versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis. N Engl J Med 365:1471–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gupta A, Mathad JS, Abdel-Rahman SM, Albano JD, Botgros R, Brown V et al (2016) Toward earlier inclusion of pregnant and postpartum women in tuberculosis drug trials: Consensus Statements from an International Expert Panel. Clin Infect Dis 62(6):761–769

    Article  PubMed  Google Scholar 

  18. Nachman S, Ahmed A, Amanullah F, Becerra MC, Botgros R, Brigden G et al (2015) Towards early inclusion of children in tuberculosis drugs trials: a consensus statement. Lancet Infect Dis 15(6):711–720

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sonnenberg P, Glynn JR, Fielding K, Murray J, Godfrey-Faussett P, Shearer S (2005) How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners. J Infect Dis 191(2):150–158

    Article  PubMed  Google Scholar 

  20. Selwyn PA, Hartel D, Lewis VA, Schoenbaum EE, Vermund SH, Klein RS et al (1989) A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection. N Engl J Med 320(9):545–550

    Article  CAS  PubMed  Google Scholar 

  21. Wood R, Maartens G, Lombard CJ (2000) Risk factors for developing tuberculosis in HIV-1-infected adults from communities with a low or very high incidence of tuberculosis. J Acquir Immune Defic Syndr 23(1):75–80

    Article  CAS  PubMed  Google Scholar 

  22. Badje A, Moh R, Gabillard D, Guehi C, Kabran M, Ntakpe JB et al (2017) Effect of isoniazid preventive therapy on risk of death in west African, HIV-infected adults with high CD4 cell counts: long-term follow-up of the Temprano ANRS 12136 trial. Lancet Glob Health 5(11):e1089

    Article  Google Scholar 

  23. Akolo C, Adetifa I, Shepperd S, Volmink J (2010) Treatment of latent tuberculosis infection in HIV infected persons. Cochrane Database Syst Rev (1):CD000171

    Google Scholar 

  24. Chaisson RE, Golub JE (2017) Preventing tuberculosis in people with HIV-no more excuses. Lancet Glob Health 5(11):e1049

    Article  Google Scholar 

  25. World Health Organization (2015) Guidelines on the managmeent of latent tuberculosis infection. WHO/HTM/TB/2015.01

    Google Scholar 

  26. Samandari T, Agizew TB, Nyirenda S, Tedla Z, Sibanda T, Shang N et al (2011) 6-month versus 36-month isoniazid preventive treatment for tuberculosis in adults with HIV infection in Botswana: a randomised, double-blind, placebo-controlled trial. Lancet 377(9777):1588–1598

    Article  CAS  PubMed  Google Scholar 

  27. Sterling TR, Scott NA, Miro JM, Calvet G, La Rosa A, Infante R et al (2016) Three months of weekly rifapentine and isoniazid for treatment of Mycobacterium tuberculosis infection in HIV-coinfected persons. AIDS 30(10):1607–1615

    Article  CAS  PubMed  Google Scholar 

  28. Mueller Y, Mpala Q, Kerschberger B, Rusch B, Mchunu G, Mazibuko S et al (2017) Adherence, tolerability, and outcome after 36 months of isoniazid-preventive therapy in 2 rural clinics of Swaziland: a prospective observational feasibility study. Medicine (Baltimore) 96(35):e7740

    Article  Google Scholar 

  29. Luetkemeyer AF, Rosenkranz SL, Lu D, Grinsztejn B, Sanchez J, Ssemmanda M et al (2015) Combined effect of CYP2B6 and NAT2 genotype on plasma efavirenz exposure during rifampin-based antituberculosis therapy in the STRIDE study. Clin Infect Dis 60(12):1860–1863

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dooley KE, Denti P, Martinson N, Cohn S, Mashabela F, Hoffmann J et al (2015) Pharmacokinetics of efavirenz and treatment of HIV-1 among pregnant women with and without tuberculosis coinfection. J Infect Dis 211(2):197–205

    Article  CAS  PubMed  Google Scholar 

  31. Leger P, Chirwa S, Turner M, Richardson DM, Baker P, Leonard M et al (2016) Pharmacogenetics of efavirenz discontinuation for reported central nervous system symptoms appears to differ by race. Pharmacogenet Genomics 26(10):473–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sterling TR, Villarino ME, Borisov AS, Shang N, Gordin F, Bliven-Sizemore E et al (2011) Three months of rifapentine and isoniazid for latent tuberculosis infection. N Engl J Med 365(23):2155–2166

    Article  CAS  PubMed  Google Scholar 

  33. Sanofi (2015) An open-label, non-randomized, single sequence, two periods, four-treatment, three parallel groups pharmacokinetic interaction study of repeated oral doses (daily or weekly regimen) of rifapentine on ATRIPLA™ (fixed dose combination of efavirenz, emtricitabine, and tenofovir disoproxil fumarate) given to HIV+ patients

    Google Scholar 

  34. Podany AT, Bao Y, Swindells S, Chaisson RE, Andersen JW, Mwelase T et al (2015) Efavirenz pharmacokinetics and pharmacodynamics in HIV-infected persons receiving Rifapentine and isoniazid for tuberculosis prevention. Clin Infect Dis. 61(8):1322–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weiner M, Egelund EF, Engle M, Kiser M, Prihoda TJ, Gelfond JA et al (2014) Pharmacokinetic interaction of rifapentine and raltegravir in healthy volunteers. J Antimicrob Chemother 69(4):1079–1085

    Article  CAS  PubMed  Google Scholar 

  36. Brooks KM, Pau AK, George JM, Alfaro R, Kellogg A, McLaughlin M et al (2016) Early termination of a PK study between dolutegravir and weekly isoniazid/rifapentine. CROI

    Google Scholar 

  37. Dickinson JM, Mitchison DA (1981) Experimental models to explain the high sterilizing activity of rifampin in the chemotherapy of tuberculosis. Am Rev Respir Dis 123(4 Pt 1):367–371

    CAS  PubMed  Google Scholar 

  38. Jindani A, Nunn AJ, Enarson DA (2004) Two 8-month regimens of chemotherapy for treatment of newly diagnosed pulmonary tuberculosis: international multicentre randomised trial. Lancet 364(9441):1244–1251

    Article  CAS  PubMed  Google Scholar 

  39. Okwera A, Whalen C, Byekwaso F, Vjecha M, Johnson J, Huebner R et al (1994) Randomised trial of thiacetazone and rifampicin-containing regimens for pulmonary tuberculosis in HIV-infected Ugandans. The Makerere University-Case Western University Research Collaboration. Lancet 344(8933):1323–1328

    Article  CAS  PubMed  Google Scholar 

  40. Dooley KE, Flexner C, Andrade AS (2008) Drug interactions involving combination antiretroviral therapy and other anti-infective agents: repercussions for resource-limited countries. J Infect Dis 198(7):948–961

    Article  CAS  PubMed  Google Scholar 

  41. Burger DM, Meenhorst PL, Koks CH, Beijnen JH (1993) Pharmacokinetic interaction between rifampin and zidovudine. Antimicrob Agents Chemother 37(7):1426–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gallicano KD, Sahai J, Shukla VK, Seguin I, Pakuts A, Kwok D et al (1999) Induction of zidovudine glucuronidation and amination pathways by rifampicin in HIV-infected patients. Br J Clin Pharmacol. 48(2):168–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Droste JA, Verweij-van Wissen CP, Kearney BP, Buffels R, Vanhorssen PJ, Hekster YA et al (2005) Pharmacokinetic study of tenofovir disoproxil fumarate combined with rifampin in healthy volunteers. Antimicrob Agents Chemother 49(2):680–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mills A, Arribas JR, Andrade-Villanueva J, DiPerri G, Van Lunzen J, Koenig E et al (2016) Switching from tenofovir disoproxil fumarate to tenofovir alafenamide in antiretroviral regimens for virologically suppressed adults with HIV-1 infection: a randomised, active-controlled, multicentre, open-label, phase 3, non-inferiority study. Lancet Infect Dis 16(1):43–52

    Article  CAS  PubMed  Google Scholar 

  45. Maartens G, Boffito M, Flexner CW (2017) Compatibility of next-generation first-line antiretrovirals with rifampicin-based antituberculosis therapy in resource limited settings. Curr Opin HIV AIDS 12(4):355–358

    Article  CAS  PubMed  Google Scholar 

  46. Custodio JM, West SK, Lutz J, Vu A, Xiao D, Collins S, et al. Twice daily administration of Tenofovir Alafenamide In combination with Rifampin: potential for Tenofovir Alafenamide use in HIV-TB coinfection. 2017

    Google Scholar 

  47. Lopez-Cortes LF, Ruiz-Valderas R, Viciana P, Alarcon-Gonzalez A, Gomez-Mateos J, Leon-Jimenez E et al (2002) Pharmacokinetic interactions between Efavirenz and rifampicin in HIV-infected patients with tuberculosis. Clin Pharmacokinet 41(9):681–690

    Article  CAS  PubMed  Google Scholar 

  48. Manosuthi W, Sungkanuparph S, Thakkinstian A, Vibhagool A, Kiertiburanakul S, Rattanasiri S et al (2005) Efavirenz levels and 24-week efficacy in HIV-infected patients with tuberculosis receiving highly active antiretroviral therapy and rifampicin. AIDS 19(14):1481–1486

    Article  CAS  PubMed  Google Scholar 

  49. Friedland G, Khoo S, Jack C, Lalloo U (2006) Administration of Efavirenz (600 mg/day) with rifampicin results in highly variable levels but excellent clinical outcomes in patients treated for tuberculosis and HIV. J Antimicrob Chemother 58(6):1299–1302

    Article  CAS  PubMed  Google Scholar 

  50. Pedral-Sampaio DB, Alves CR, Netto EM, Brites C, Oliveira AS, Badaro R (2004) Efficacy and safety of Efavirenz in HIV patients on Rifampin for tuberculosis. Braz J Infect Dis 8(3):211–216

    Article  CAS  PubMed  Google Scholar 

  51. Patel A, Patel K, Patel J, Shah N, Patel B, Rani S (2004) Safety and antiretroviral effectiveness of concomitant use of rifampicin and efavirenz for antiretroviral-naive patients in India who are coinfected with tuberculosis and HIV-1. J Acquir Immune Defic Syndr 37(1):1166–1169

    Article  CAS  PubMed  Google Scholar 

  52. Bertrand J, Verstuyft C, Chou M, Borand L, Chea P, Nay KH et al (2014) Dependence of Efavirenz- and rifampicin-isoniazid-based antituberculosis treatment drug-drug interaction on CYP2B6 and NAT2 genetic polymorphisms: ANRS 12154 Study in Cambodia. J Infect Dis 209(3):399–408

    Article  CAS  PubMed  Google Scholar 

  53. HM MI, Schomaker M, Ren Y, Sinxadi P, Nuttall JJ, Gous H et al (2013) Effects of rifampin-based antituberculosis therapy on plasma efavirenz concentrations in children vary by CYP2B6 genotype. AIDS 27(12):1933–1940

    Article  CAS  Google Scholar 

  54. Crawford KW, Ripin DH, Levin AD, Campbell JR, Flexner C (2012 July 01) Participants of conference on antiretroviral drug optimization. Optimising the manufacture, formulation, and dose of antiretroviral drugs for more cost-efficient delivery in resource-limited settings: a consensus statement. Lancet Infect Dis 12(7):550–560

    Article  PubMed  Google Scholar 

  55. ENCORE1 Study Group, Carey D, Puls R, Amin J, Losso M, Phanupak P et al (2015) Efficacy and safety of efavirenz 400 mg daily versus 600 mg daily: 96-week data from the randomised, double-blind, placebo-controlled, non-inferiority ENCORE1 study. Lancet Infect Dis. 15(7):793–802

    Article  CAS  Google Scholar 

  56. Marzolini C, Telenti A, Decosterd LA, Greub G, Biollaz J, Buclin T (2001) Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS 15(1):71–75

    Article  CAS  PubMed  Google Scholar 

  57. Dickinson L, Amin J, Else L, Boffito M, Egan D, Owen A et al (2016) Comprehensive pharmacokinetic, pharmacodynamic and pharmacogenetic evaluation of once-daily Efavirenz 400 and 600 mg in treatment-naive HIV-infected patients at 96 weeks: results of the ENCORE1 Study. Clin Pharmacokinet 55(7):861–873

    Article  CAS  PubMed  Google Scholar 

  58. Dickinson L, Amin J, Else L, Boffito M, Egan D, Owen A et al (2015) Pharmacokinetic and pharmacodynamic comparison of once-daily efavirenz (400 mg vs. 600 mg) in treatment-naive HIV-infected patients: results of the ENCORE1 Study. Clin Pharmacol Ther 98(4):406–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Autar RS, Wit FW, Sankote J, Mahanontharit A, Anekthananon T, Mootsikapun P et al (2005) Nevirapine plasma concentrations and concomitant use of rifampin in patients coinfected with HIV-1 and tuberculosis. Antivir Ther 10(8):937–943

    CAS  PubMed  Google Scholar 

  60. Ribera E, Pou L, Lopez RM, Crespo M, Falco V, Ocana I et al (2001) Pharmacokinetic interaction between nevirapine and rifampicin in HIV-infected patients with tuberculosis. J Acquir Immune Defic Syndr 28(5):450–453

    Article  CAS  PubMed  Google Scholar 

  61. Nafrialdi NAW (2012) Yunihastuti E, Wiria MS. Influence of rifampicin on nevirapine plasma concentration in HIV-TB coinfected patients. Acta Med Indones 44(2):135–139

    CAS  PubMed  Google Scholar 

  62. Swaminathan S, Padmapriyadarsini C, Venkatesan P, Narendran G, Ramesh Kumar S, Iliayas S et al (2011) Efficacy and safety of once-daily nevirapine- or efavirenz-based antiretroviral therapy in HIV-associated tuberculosis: a randomized clinical trial. Clin Infect Dis 53(7):716–724

    Article  CAS  PubMed  Google Scholar 

  63. Bhatt NB, Baudin E, Meggi B, da Silva C, Barrail-Tran A, Furlan V et al (2015 Jan) Nevirapine or efavirenz for tuberculosis and HIV coinfected patients: exposure and virological failure relationship. J Antimicrob Chemother 70(1):225–232

    Article  CAS  PubMed  Google Scholar 

  64. Shipton LK, Wester CW, Stock S, Ndwapi N, Gaolathe T, Thior I et al (2009) Safety and efficacy of nevirapine- and efavirenz-based antiretroviral treatment in adults treated for TB-HIV co-infection in Botswana. Int J Tuberc Lung Dis 13(3):360–366

    CAS  PubMed  Google Scholar 

  65. Bonnet M, Bhatt N, Baudin E, Silva C, Michon C, Taburet AM et al (2013) Nevirapine versus efavirenz for patients co-infected with HIV and tuberculosis: a randomised non-inferiority trial. Lancet Infect Dis 13(4):303–312

    Article  CAS  PubMed  Google Scholar 

  66. Boulle A, Van Cutsem G, Cohen K, Hilderbrand K, Mathee S, Abrahams M et al (2008) Outcomes of nevirapine- and efavirenz-based antiretroviral therapy when coadministered with rifampicin-based antitubercular therapy. JAMA 300(5):530–539

    Article  CAS  PubMed  Google Scholar 

  67. Ramachandran G, Hemanthkumar AK, Rajasekaran S, Padmapriyadarsini C, Narendran G, Sukumar B et al (2006) Increasing nevirapine dose can overcome reduced bioavailability due to rifampicin coadministration. J Acquir Immune Defic Syndr 42(1):36–41

    Article  CAS  PubMed  Google Scholar 

  68. Edurant package insert (2011) Tibotec Therapeutics

    Google Scholar 

  69. Kakuda TN, Scholler-Gyure M, Hoetelmans RM (2011) Pharmacokinetic interactions between etravirine and non-antiretroviral drugs. Clin Pharmacokinet 50(1):25–39

    Article  CAS  PubMed  Google Scholar 

  70. Wenning LA, Hanley WD, Brainard DM, Petry AS, Ghosh K, Jin B et al (2009) Effect of rifampin, a potent inducer of drug-metabolizing enzymes, on the pharmacokinetics of raltegravir. Antimicrob Agents Chemother 53(7):2852–2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Taburet AM, Sauvageon H, Grinsztejn B, Assuied A, Veloso V, Pilotto JH et al (2015) Pharmacokinetics of Raltegravir in HIV-infected patients on rifampicin-based antitubercular therapy. Clin Infect Dis 61(8):1328–1335

    Article  CAS  PubMed  Google Scholar 

  72. Reynolds HE, Chrdle A, Egan D, Chaponda M, Else L, Chiong J et al (2015) Effect of intermittent rifampicin on the pharmacokinetics and safety of raltegravir. J Antimicrob Chemother 70(2):550–554

    Article  CAS  PubMed  Google Scholar 

  73. Grinsztejn B, De Castro N, Arnold V, Veloso VG, Morgado M, Pilotto JH et al (2014) Raltegravir for the treatment of patients co-infected with HIV and tuberculosis (ANRS 12 180 Reflate TB): a multicentre, phase 2, non-comparative, open-label, randomised trial. Lancet Infect Dis 14(6):459–467

    Article  CAS  PubMed  Google Scholar 

  74. Markowitz M, Nguyen BY, Gotuzzo E, Mendo F, Ratanasuwan W, Kovacs C et al (2009) Sustained antiretroviral effect of raltegravir after 96 weeks of combination therapy in treatment-naive patients with HIV-1 infection. J Acquir Immune Defic Syndr 52(3):350–356

    Article  CAS  PubMed  Google Scholar 

  75. Dooley KE, Sayre P, Borland J, Purdy E, Chen S, Song I et al (2012) Safety, tolerability, and pharmacokinetics of the HIV integrase inhibitor dolutegravir given twice daily with rifampin or once daily with rifabutin: results of a phase 1 study among healthy subjects. J Acquir Immune Defic Syndr:15

    Google Scholar 

  76. Lee JS, Calmy A, Andrieux-Meyer I, Ford N (2012) Review of the safety, efficacy, and pharmacokinetics of elvitegravir with an emphasis on resource-limited settings. HIV AIDS (Auckl) 4:5–15

    Google Scholar 

  77. Zhang H, Custodio JM, Wei X, Wang H, Vu A, Ling J, et al. Clinical pharmacology of the HIV integrase strand transfer inhibitor bictegravir. 2017

    Google Scholar 

  78. Tseng A, Hughes CA, Wu J, Seet J, Phillips EJ (2017) Cobicistat versus ritonavir: similar pharmacokinetic enhancers but some important differences. Ann Pharmacother 51(11):1008–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Roberts O, Khoo S, Owen A, Siccardi M (2017) Interaction of Rifampin and Darunavir-Ritonavir or Darunavir-Cobicistat In Vitro. Antimicrob Agents Chemother 61(5):16

    Article  Google Scholar 

  80. Acosta EP, Kendall MA, Gerber JG, Alston-Smith B, Koletar SL, Zolopa AR et al (2007) Effect of concomitantly administered rifampin on the pharmacokinetics and safety of atazanavir administered twice daily. Antimicrob Agents Chemother 51(9):3104–3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Burger DM, Agarwala S, Child M, Been-Tiktak A, Wang Y, Bertz R (2006) Effect of rifampin on steady-state pharmacokinetics of atazanavir with ritonavir in healthy volunteers. Antimicrob Agents Chemother 50(10):3336–3342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. LaPorte C, Colbers E, Bertz R, Vonchek D, Wikstrom K, Boeree M et al (2004) Pharmacokinetics of adjusted-dose lopinavir-ritonavir combined with rifampin in healthy volunteers. Antimicrob Agents Chemother 48(5):1553–1560

    Article  CAS  Google Scholar 

  83. Decloedt EH, McIlleron H, Smith P, Merry C, Orrell C, Maartens G (2011) Pharmacokinetics of lopinavir in HIV-infected adults receiving rifampin with adjusted doses of lopinavir-ritonavir tablets. Antimicrob Agents Chemother 55(7):3195–3200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Decloedt EH, Maartens G, Smith P, Merry C, Bango F, McIlleron H (2012) The safety, effectiveness and concentrations of adjusted lopinavir/ritonavir in HIV-infected adults on rifampicin-based antitubercular therapy. PLoS One 7(3):e32173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. L'homme RF, Nijland HM, Gras L, Aarnoutse RE, van Crevel R, Boeree M et al (2009) Clinical experience with the combined use of lopinavir/ritonavir and rifampicin. AIDS 27(7):863–865

    Article  Google Scholar 

  86. Sunpath H, Winternheimer P, Cohen S, Tennant I, Chelin N, Gandhi RT et al (2014) Double-dose lopinavir-ritonavir in combination with rifampicin-based anti-tuberculosis treatment in South Africa. Int J Tuberc Lung Dis 18(6):689–693

    Article  CAS  PubMed  Google Scholar 

  87. Murphy RA, Marconi VC, Gandhi RT, Kuritzkes DR, Sunpath H (2012) Coadministration of lopinavir/ritonavir and rifampicin in HIV and tuberculosis co-infected adults in South Africa. PLoS One 7(9):e44793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Abel S, Jenkins TM, Whitlock LA, Ridgway CE, Muirhead GJ (2008) Effects of CYP3A4 inducers with and without CYP3A4 inhibitors on the pharmacokinetics of maraviroc in healthy volunteers. Br J Clin Pharmacol 65(Suppl 1):38–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Boyd MA, Zhang X, Dorr A, Ruxrungtham K, Kolis S, Nieforth K et al (2003) Lack of enzyme-inducing effect of rifampicin on the pharmacokinetics of enfuvirtide. J Clin Pharmacol 43(12):1382–1391

    Article  CAS  PubMed  Google Scholar 

  90. Boeree MJ, Heinrich N, Aarnoutse R, Diacon AH, Dawson R, Rehal S et al (2017) High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect Dis 17(1):39–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Heifets L (1999) Microbiological aspects of rifapentine. Drugs Today 35(Suppl. D):7

    CAS  Google Scholar 

  92. Dooley KE, Bliven-Sizemore EE, Weiner M, Lu Y, Nuermberger EL, Hubbard WC et al (2012) Safety and Pharmacokinetics of Escalating Daily Doses of the Antituberculosis Drug Rifapentine in Healthy Volunteers. Clin Pharmacol Ther 91(5). https://doi.org/10.1038/clpt.2011.323

  93. Burman W, Dooley KE, Nuermberger E (2011) The rifamycins: renewed interest in an old drug class. In: Donald P, van Helden P (eds) Antituberculosis chemotherapy, vol 40. Karger AG—Medical and Scientific Publishers, Basel

    Chapter  Google Scholar 

  94. Davies G, Cerri S, Richeldi L (2007) Rifabutin for treating pulmonary tuberculosis. Cochrane Database Syst Rev (4). CD005159

    Google Scholar 

  95. Blaschke TF, Skinner MH (1996) The clinical pharmacokinetics of rifabutin. Clin Infect Dis 22(Suppl 1):2

    Google Scholar 

  96. Tseng AL, Walmsley SL (1995) Rifabutin-associated uveitis. Ann Pharmacother 29(11):1149–1155

    Article  CAS  PubMed  Google Scholar 

  97. Griffith DE, Brown BA (1996) Wallace RJ,Jr. Varying dosages of rifabutin affect white blood cell and platelet counts in human immunodeficiency virus--negative patients who are receiving multidrug regimens for pulmonary Mycobacterium avium complex disease. Clin Infect Dis 23(6):1321–1322

    Article  CAS  PubMed  Google Scholar 

  98. Khachi H, O'Connell R, Ladenheim D, Orkin C (2009) Pharmacokinetic interactions between rifabutin and lopinavir/ritonavir in HIV-infected patients with mycobacterial co-infection. J Antimicrob Chemother 64(4):871–873

    Article  CAS  PubMed  Google Scholar 

  99. Jenny-Avital ER, Joseph K (2009) Rifamycin-resistant Mycobacterium tuberculosis in the highly active antiretroviral therapy era: a report of 3 relapses with acquired rifampin resistance following alternate-day rifabutin and boosted protease inhibitor therapy. Clin Infect Dis 48(10):1471–1474

    Article  CAS  PubMed  Google Scholar 

  100. Boulanger C, Hollender E, Farrell K, Stambaugh JJ, Maasen D, Ashkin D et al (2009) Pharmacokinetic evaluation of rifabutin in combination with lopinavir-ritonavir in patients with HIV infection and active tuberculosis. Clin Infect Dis 49(9):1305–1311

    Article  CAS  PubMed  Google Scholar 

  101. Ramachandran G, Bhavani PK, Hemanth Kumar AK, Srinivasan R, Raja K, Sudha V et al (2013) Pharmacokinetics of rifabutin during atazanavir/ritonavir co-administration in HIV-infected TB patients in India. Int J Tuberc Lung Dis 17(12):1564–1568

    Article  CAS  PubMed  Google Scholar 

  102. Jenks JD, Kumarasamy N, Ezhilarasi C, Poongulali S, Ambrose P, Yepthomi T et al (2016) Improved tuberculosis outcomes with daily vs. intermittent rifabutin in HIV-TB coinfected patients in India. Int J Tuberc Lung Dis 20(9):1181–1184

    Article  CAS  PubMed  Google Scholar 

  103. Lan NT, Thu NT, Barrail-Tran A, Duc NH, Lan NN, Laureillard D et al (2014) Randomised pharmacokinetic trial of rifabutin with lopinavir/ritonavir-antiretroviral therapy in patients with HIV-associated tuberculosis in Vietnam. PLoS One 9(1):e84866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Naiker S, Connolly C, Wiesner L, Kellerman T, Reddy T, Harries A et al (2014) Randomized pharmacokinetic evaluation of different rifabutin doses in African HIV- infected tuberculosis patients on lopinavir/ritonavir-based antiretroviral therapy. BMC Pharmacol Toxicol 15:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Yapa HM, Boffito M, Pozniak A (2016) Critical review: what dose of rifabutin is recommended with antiretroviral therapy? J Acquir Immune Defic Syndr 72(2):138–152

    Article  CAS  PubMed  Google Scholar 

  106. Crauwels H, van Heeswijk RP, Stevens M, Buelens A, Vanveggel S, Boven K et al (2013) Clinical perspective on drug-drug interactions with the non-nucleoside reverse transcriptase inhibitor rilpivirine. AIDS Rev 15(2):87–101

    PubMed  Google Scholar 

  107. Kakuda TN, Woodfall B, De Marez T, Peeters M, Vandermeulen K, Aharchi F et al (2014) Pharmacokinetic evaluation of the interaction between etravirine and rifabutin or clarithromycin in HIV-negative, healthy volunteers: results from two Phase 1 studies. J Antimicrob Chemother 69(3):728–734

    Article  CAS  PubMed  Google Scholar 

  108. Brainard DM, Kassahun K, Wenning LA, Petry AS, Liu C, Lunceford J et al (2011) Lack of a clinically meaningful pharmacokinetic effect of rifabutin on raltegravir: in vitro/in vivo correlation. J Clin Pharmacol 51(6):943–950

    Article  CAS  PubMed  Google Scholar 

  109. Ramanathan S, Mathias AA, German P, Kearney BP (2011) Clinical pharmacokinetic and pharmacodynamic profile of the HIV integrase inhibitor elvitegravir. Clin Pharmacokinet 50(4):229–244

    Article  CAS  PubMed  Google Scholar 

  110. World Health Organization (2016) WHO treatment guidelines for drug-resistant tuberculosis: 2016 update

    Google Scholar 

  111. Brust JCM, Shah NS, Mlisana K, Moodley P, Allana S, Campbell A et al (2017) Improved survival and cure rates with concurrent treatment for MDR-TB/HIV co-infection in South Africa. Clin Infect Dis:26

    Google Scholar 

  112. Satti H, McLaughlin MM, Hedt-Gauthier B, Atwood SS, Omotayo DB, Ntlamelle L et al (2012) Outcomes of multidrug-resistant tuberculosis treatment with early initiation of antiretroviral therapy for HIV co-infected patients in Lesotho. PLoS One 7(10):e46943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Naidoo A, Chirehwa M, McIlleron H, Naidoo K, Essack S, Yende-Zuma N et al (2017) Effect of rifampicin and efavirenz on moxifloxacin concentrations when co-administered in patients with drug-susceptible TB. J Antimicrob Chemother 72(5):1441–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Coyne KM, Pozniak AL, Lamorde M, Boffito M (2009) Pharmacology of second-line antituberculosis drugs and potential for interactions with antiretroviral agents. AIDS 23(4):437–446

    Article  PubMed  Google Scholar 

  115. Svensson EM, Karlsson MO (2017) Modelling of mycobacterial load reveals bedaquiline's exposure-response relationship in patients with drug-resistant TB. J Antimicrob Chemother 72(12):3398–3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. van Heeswijk RP, Dannemann B, Hoetelmans RM (2014) Bedaquiline: a review of human pharmacokinetics and drug-drug interactions. J Antimicrob Chemother 69(9):2310–2318

    Article  PubMed  CAS  Google Scholar 

  117. Svensson EM, Dooley KE, Karlsson MO (2014) Impact of lopinavir-ritonavir or nevirapine on bedaquiline exposures and potential implications for patients with tuberculosis-HIV coinfection. Antimicrob Agents Chemother 58(11):6406–6412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Pandie M, Wiesner L, McIlleron H, Hughes J, Siwendu S, Conradie F et al (2016) Drug-drug interactions between bedaquiline and the antiretrovirals lopinavir/ritonavir and nevirapine in HIV-infected patients with drug-resistant TB. J Antimicrob Chemother 71(4):1037–1040

    Article  CAS  PubMed  Google Scholar 

  119. Brill MJ, Svensson EM, Pandie M, Maartens G, Karlsson MO (2017) Confirming model-predicted pharmacokinetic interactions between bedaquiline and lopinavir/ritonavir or nevirapine in patients with HIV and drug-resistant tuberculosis. Int J Antimicrob Agents 49(2):212–217

    Article  CAS  PubMed  Google Scholar 

  120. Dooley KE, Park JG, Swindells S, Allen R, Haas DW, Cramer Y et al (2012) Safety, tolerability, and pharmacokinetic interactions of the antituberculous agent TMC207 (Bedaquiline) with efavirenz in healthy volunteers: AIDS Clinical Trials Group Study A5267. J Acquir Immune Defic Syndr 59(5):455–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Svensson EM, Aweeka F, Park JG, Marzan F, Dooley KE, Karlsson MO (2013) Model-based estimates of the effects of efavirenz on bedaquiline pharmacokinetics and suggested dose adjustments for patients coinfected with HIV and tuberculosis. Antimicrob Agents Chemother 57(6):2780–2787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mallikaarjun S, Wells C, Petersen C, Paccaly A, Shoaf SE, Patil S et al (2016) Delamanid coadministered with antiretroviral drugs or antituberculosis drugs shows no clinically relevant drug-drug interactions in healthy subjects. Antimicrob Agents Chemother 60(10):5976–5985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. World Health Organization (2016) Tuberculosis fact sheet: tuberculosis in women

    Google Scholar 

  124. Say L, Chou D, Gemmill A, Tuncalp O, Moller AB, Daniels J et al (2014) Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health 2(6):323

    Article  Google Scholar 

  125. Zenner D, Kruijshaar ME, Andrews N, Abubakar I (2012) Risk of tuberculosis in pregnancy: a national, primary care-based cohort and self-controlled case series study. Am J Respir Crit Care Med 185(7):779–784

    Article  PubMed  Google Scholar 

  126. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. [Internet]. [cited April 10 2009]. Available from: http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf

  127. Pillay T, Khan M, Moodley J, Adhikari M, Coovadia H (2004) Perinatal tuberculosis and HIV-1: considerations for resource-limited settings. Lancet Infect Dis 4(3):155–165

    Article  CAS  PubMed  Google Scholar 

  128. Loebstein R, Lalkin A, Koren G (1997) Pharmacokinetic changes during pregnancy and their clinical relevance. Clin Pharmacokinet 33(5):328–343

    Article  CAS  PubMed  Google Scholar 

  129. Mirochnick M, Best BM, Stek AM, Capparelli E, Hu C, Burchett SK et al (2008) Lopinavir exposure with an increased dose during pregnancy. J Acquir Immune Defic Syndr 49(5):485–491

    Article  PubMed  PubMed Central  Google Scholar 

  130. Bonafe SM, Costa DA, Vaz MJ, Senise JF, Pott-Junior H, Machado RH et al (2013) A randomized controlled trial to assess safety, tolerability, and antepartum viral load with increased lopinavir/ritonavir dosage in pregnancy. AIDS Patient Care STDs 27(11):589–595

    Article  PubMed  PubMed Central  Google Scholar 

  131. Hesseling AC, Westra AE, Werschkull H, Donald PR, Beyers N, Hussey GD et al (2005) Outcome of HIV infected children with culture confirmed tuberculosis. Arch Dis Child 90(11):1171–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Marais BJ, Schaaf HS (2014) Tuberculosis in children. Cold Spring Harb Perspect Med 4(9):a017855

    Article  PubMed  PubMed Central  Google Scholar 

  133. Newell ML, Coovadia H, Cortina-Borja M, Rollins N, Gaillard P, Dabis F et al (2008) Mortality of infected and uninfected infants born to HIV-infected mothers in Africa: a pooled analysis. Lancet 364(9441):1236–1243

    Article  Google Scholar 

  134. Essential medicines and health products: finished pharmaceutical products [Internet]. Available from: https://extranet.who.int/prequal/content/prequalified-lists/medicines?label=&field_medicine_applicant=&field_medicine_fpp_site_value=&search_api_aggregation_1=&field_medicine_pq_date%5Bdate%5D=&field_medicine_pq_date_1%5Bdate%5D=&field_therapeutic_area=23&field_medicine_status=&field_basis_of_listing=43&field_single_fixed_dose_list%5B%5D=2&field_single_fixed_dose_list%5B%5D=3&field_single_fixed_dose_list%5B%5D=4&field_single_fixed_dose_list%5B%5D=&field_co_packed_list%5B%5D=2

  135. Moultrie H, McIlleron H, Sawry S, Kellermann T, Wiesner L, Kindra G et al (2015) Pharmacokinetics and safety of rifabutin in young HIV-infected children receiving rifabutin and lopinavir/ritonavir. J Antimicrob Chemother 70(2):543–549

    Article  CAS  PubMed  Google Scholar 

  136. Ren Y, Nuttall JJ, Egbers C, Eley BS, Meyers TM, Smith PJ et al (2008) Effect of rifampicin on lopinavir pharmacokinetics in HIV-infected children with tuberculosis. J Acquir Immune Defic Syndr 47(5):566–569

    Article  CAS  PubMed  Google Scholar 

  137. McIlleron H, Ren Y, Nuttall J, Fairlie L, Rabie H, Cotton M et al (2011) Lopinavir exposure is insufficient in children given double doses of lopinavir/ritonavir during rifampicin-based treatment for tuberculosis. Antivir Ther 16(3):417–421

    Article  CAS  PubMed  Google Scholar 

  138. Zhang C, McIlleron H, Ren Y, van der Walt JS, Karlsson MO, Simonsson US et al (2012) Population pharmacokinetics of lopinavir and ritonavir in combination with rifampicin-based antitubercular treatment in HIV-infected children. Antivir Ther 17(1):25–33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Ren Y, Nuttall JJ, Eley BS, Meyers TM, Smith PJ, Maartens G et al (2009) Effect of rifampicin on efavirenz pharmacokinetics in HIV-infected children with tuberculosis. J Acquir Immune Defic Syndr 50(5):439–443

    Article  CAS  PubMed  Google Scholar 

  140. Zanoni BC, Phungula T, Zanoni HM, France H, Feeney ME (2011) Impact of tuberculosis cotreatment on viral suppression rates among HIV-positive children initiating HAART. AIDS 25(1):49–55

    Article  PubMed  Google Scholar 

  141. Oudijk JM, McIlleron H, Mulenga V, Chintu C, Merry C, Walker AS et al (2012) Pharmacokinetics of nevirapine in HIV-infected children under 3 years on rifampicin-based antituberculosis treatment. AIDS 26(12):1523–1528

    Article  CAS  PubMed  Google Scholar 

  142. Kamateeka MML, Mudiope P, Mubiru M, Ajuna P, Lutajumwa M, Musoke P (2009) Immunological and virological response to fixed-dose nevirapine based highly active antiretroviral therapy (HAART) in HIV-infected Ugandan children with concurrent active tuberculosis infection on rifampicin-based anti-TB treatment. IAS, Cape Town

    Google Scholar 

  143. Kwara A, Ramachandran G, Swaminathan S (2010 Jan) Dose adjustment of the non-nucleoside reverse transcriptase inhibitors during concurrent rifampicin-containing tuberculosis therapy: one size does not fit all. Expert Opin Drug Metab Toxicol 6(1):55–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly E. Dooley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weld, E.D., Pau, A.K., Maartens, G., Dooley, K.E. (2019). Co-treatment of Tuberculosis and HIV: Pharmacologic Considerations. In: Sereti, I., Bisson, G.P., Meintjes, G. (eds) HIV and Tuberculosis. Springer, Cham. https://doi.org/10.1007/978-3-030-29108-2_11

Download citation

Publish with us

Policies and ethics