Skip to main content

Dynamic Phase Diagram of the REM

  • Conference paper
  • First Online:
Statistical Mechanics of Classical and Disordered Systems (StaMeClaDys 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 293))

Abstract

By studying the two-time overlap correlation function, we give a comprehensive analysis of the phase diagram of the Random Hopping Dynamics of the Random Energy Model (REM) on time-scales that are exponential in the volume. These results are derived from the convergence properties of the clock process associated to the dynamics and fine properties of the simple random walk in the n-dimensional discrete cube.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, vol. 55. Courier Dover Publications, Mineola (1964)

    Google Scholar 

  2. Ben Arous, G., Bovier, A., Gayrard, V.: Glauber dynamics of the random energy model. I. Metastable motion on the extreme states. Commun. Math. Phys. 235(3), 379–425 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben Arous, G., Bovier, A., Gayrard, V.: Glauber dynamics of the random energy model. II. Aging below the critical temperature. Commun. Math. Phys. 236(1), 1–54 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben Arous, G., Černý, J.: The arcsine law as a universal aging scheme for trap models. Commun. Pure Appl. Math. 61(3), 289–329 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben Arous, G., Gayrard, V.: Elementary potential theory on the hypercube. Electron. J. Probab. 13(59), 1726–1807 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Ben Arous, G., Gün, O.: Universality and extremal aging for dynamics of spin glasses on subexponential time scales. Commun. Pure Appl. Math 65(1), 77–127 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bennett, G.: Probability inequalities for the sum of independent random Variables. J. Am. Stat. Assoc. 57(297), 33–45 (1962)

    Article  MATH  Google Scholar 

  8. Bertin, E., Bouchaud, J.-P.: Dynamical ultrametricity in the critical trap model. J. Phys. A Math. Gen. 35(13), 3039–3051 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bouchaud, J.-P.: Weak ergodicity breaking and aging in disordered systems. J. Phys. I (France) 2, 1705–1713 (1992)

    Article  Google Scholar 

  10. Bouchaud, J.-P., Cugliandolo, L., Kurchan, J., Mézard, M.: Out of equilibrium dynamics in spin-glasses and other glassy systems. In: Young, A.P. (ed.) Spin Glasses and Random Fields. World Scientific, Singapore (1998)

    Google Scholar 

  11. Bouchaud, J.-P., Dean, D.S.: Aging on Parisi’s Tree. Journal de Physique I(5), 265–286 (1995)

    Google Scholar 

  12. Bovier, A.: Statistical Mechanics of Disordered Systems: A Mathematical Perspective. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  13. Bovier, A., Gayrard, V.: Convergence of clock processes in random environments and ageing in the \(p\)-spin SK model. Ann. Probab. 41(2), 817–847 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bovier, A., Gayrard, V., Švejda, A.: Convergence to extremal processes in random environments and extremal ageing in SK models. Probab. Theory Relat. Fields 157(1–2), 251–283 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Černý, J., Gayrard, V.: Hitting time of large subsets of the hypercube. Random Struct. Algorithms 33(2), 252–267 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Černý, J., Wassmer, T.: Aging of the metropolis dynamics on the random energy model. Probab. Theory Relat. Fields 1–51 (2015)

    Google Scholar 

  17. Cramér, H.: Mathematical Methods of Statistics. Princeton Mathematical Series, vol. 9. Princeton University Press, Princeton (1946)

    MATH  Google Scholar 

  18. Cugliandolo, L.F., Kurchan, J.: On the out-of-equilibrium relaxation of the Sherrington-Kirkpatrick model. J. Phys. A Math. Gen. 27(17), 5749–5772 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Diaconis, P., Stroock, D.: Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab. 1(1), 36–61 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Durrett, R., Resnick, S.I.: Functional limit theorems for dependent variables. Ann. Probab. 6(5), 829–846 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Erickson, K.B.: Strong renewal theorems with infinite mean. Trans. Am. Math. Soc. 151, 263–291 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  22. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2. Wiley, New York (1971)

    MATH  Google Scholar 

  23. Fontes, L.R.G., Gayrard, V.: Asymptotic behavior and aging of a low temperature cascading 2-GREM dynamics at extreme time scales. (2018). arXiv:1801.08832

  24. Fontes, L.R.G., Isopi, M., Newman, C.M.: Random walks with strongly inhomogeneous rates and singular diffusions: convergence, localization and aging in one dimension. Ann. Probab. 30(2), 579–604 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fontes, L.R.G., Lima, P.H.S.: Convergence of symmetric trap models in the hypercube. In: Sidoravičius, V. (ed.) New Trends in Mathematical Physics, pp. 285–297. Springer Netherlands, Dordrecht (2009)

    Chapter  Google Scholar 

  26. Gayrard, V: Aging in reversible dynamics of disordered systems. II. Emergence of the arcsine law in the random hopping time dynamics of the REM (2010). arXiv:1008.3849

  27. Gayrard, V.: Convergence of clock process in random environments and aging in Bouchaud’s asymmetric trap model on the complete graph. Electron. J. Probab. 17(58), 1–33 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Gayrard, V.: Convergence of clock processes and aging in Metropolis dynamics of a truncated REM. Ann. Henri Poincaré 17(3), 537–614 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gayrard, V.: Aging in metropolis dynamics of the REM: a proof. Probab. Theory Relat. Fields 174(1–2), 501–551 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gün, O.: Universality of Transient dynamic and aging for Spin-Glasses. Ph.D. thesis, New York University (2009)

    Google Scholar 

  31. Hall, P.: On the rate of convergence of normal extremes. J. Appl. Probab. 16(2), 433–439 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kemperman, J.H.B.: The Passage Problem for a Stationary Markov chain. Statistical Research Monographs, vol. I. The University of Chicago Press, Chicago (1961)

    Google Scholar 

  33. LePage, R., Woodroofe, M., Zinn, J.: Convergence to a stable distribution via order statistics. Ann. Probab. 9(4), 624–632 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mathieu, P.: Convergence to equilibrium for spin glasses. Commun. Math. Phys. 215(1), 57–68 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mathieu, P., Mourrat, J.-C.: Aging of asymmetric dynamics on the random energy model. Probab. Theory Relat. Fields 161(1), 351–427 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Resnick, S.I.: Extreme Values, Regular Variation and Point Processes. Springer, Berlin (2008)

    MATH  Google Scholar 

  37. Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes, and Martingales. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, vol. 1, 2nd edn. Wiley, Chichester (1994). Foundations

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Gayrard .

Editor information

Editors and Affiliations

Appendices

Appendix A. Calculations

This appendix contains calculatory results on the moments of \(f_{\delta }({\gamma }_n(x))\) and \(g_{\delta }({\gamma }_n(x))\) that are needed in several places in the proofs. Our first lemma provides asymptotic bounds on \(a_n{\mathbb E}\left( f_{\delta }({\gamma }_n(x))\right) \) and \(a_n{\mathbb E}\left( f_{\delta }({\gamma }_n(x))^2\right) \) needed in the verification of Condition (A3’).

Lemma A.1

For all \(0<\varepsilon \le 1\) and all \(0<\beta <\infty \) such that \({\alpha }(\varepsilon )=1\) we have that for all \({\delta }>0\) and large enough n, there exist constants \(0<c_0,c_1<\infty \) such that

$$\begin{aligned} a_n{\mathbb E}\left( f_{\delta }({\gamma }_n(x))\right) \le c_0 {\delta }, \end{aligned}$$
(A.1)
$$\begin{aligned} a_n{\mathbb E}\left( f_{\delta }({\gamma }_n(x))^2\right) \le {\delta }^4+c_1. \end{aligned}$$
(A.2)

Proof

We observe that

$$\begin{aligned} f_{\delta }(u)\le {\delta }^2 \quad \forall u\in (0,\infty ). \end{aligned}$$
(A.3)

We decompose \(a_n{\mathbb E}\left( f_{\delta }({\gamma }_n(x))\right) \) in the following way

$$\begin{aligned} a_n{\mathbb E}\left( f_{\delta }({\gamma }_n(x))\right) = a_n{\mathbb E}\left( f_{\delta }({\gamma }_n(x))\mathbbm {1}_{\{{\gamma }_n(x)>{\delta }\}}\right) +a_n{\mathbb E}\left( f_{\delta }({\gamma }_n(x))\mathbbm {1}_{\{{\gamma }_n(x)\le {\delta }\}}\right) \equiv (1) + (2) \end{aligned}$$
(A.4)

By (3.2) of Lemma 3.1 and the assumption that \({\alpha }(\varepsilon )=1\),

$$\begin{aligned} (1)\le {\delta }^2a_n{\mathbb P}\left( {\gamma }_n(x)>{\delta }\right) \sim {\delta }. \end{aligned}$$
(A.5)

Turning to (2) we have

$$\begin{aligned} (2)\le & {} a_n{\mathbb E}\left( {\gamma }_n(x)^2\mathbbm {1}_{\{{\gamma }_n(x)\le {\delta }\}}\right) \nonumber \\= & {} \frac{a_n e^{2n{\beta }^2}}{c_n^2}\int _{-\infty }^{\frac{\log (c_n{\delta })}{\sqrt{n}{\beta }}-2\sqrt{n}{\beta }} \frac{e^{-u^2/2}}{\sqrt{2\pi }} \text{ d }u\nonumber \\\sim & {} \frac{a_n e^{2n{\beta }^2}}{c_n^2} \left( \sqrt{2\pi }\left( -\frac{\log (c_n{\delta })}{\sqrt{n}{\beta }}+2\sqrt{n}{\beta }\right) \right) ^{-1}e^{-\frac{1}{2}\left( \frac{\log (c_n{\delta })}{\sqrt{n}{\beta }}-2\sqrt{n}{\beta }\right) ^2}, \end{aligned}$$
(A.6)

where we used that by (3.21), for \({\alpha }(\varepsilon )=1\), \(\frac{\log (c_n{\delta })}{\sqrt{n}{\beta }}-2\sqrt{n}{\beta }\rightarrow -\infty \) as \(n\rightarrow \infty \). Now we start to expand the exponent of the exponential function and plug in (3.21).

$$\begin{aligned} (A.6) = a_n\left( \sqrt{2\pi }\left( -\frac{\log (c_n{\delta })}{\sqrt{n}{\beta }}+2\sqrt{n}{\beta }\right) \right) ^{-1} {\delta }^2 e^{-\frac{1}{2}\left( \frac{\log c_n{\delta }}{\sqrt{n}{\beta }}\right) ^2} = c_0' {\delta }(1+o(1)), \end{aligned}$$
(A.7)

where \(0<c_0'<\infty \). Putting our estimates together we have that for n large enough there exists a constant \(0<c_0<\infty \) such that

$$\begin{aligned} a_n{\mathbb E}\left( f_{\delta }({\gamma }_n(x))\right) \le c_0 {\delta }. \end{aligned}$$
(A.8)

In a similar way we treat \(a_n{\mathbb E}\left( f_{\delta }({\gamma }_n(x))^2\right) \). This time we truncate at one, namely

$$\begin{aligned} a_n{\mathbb E}\left( f_{\delta }({\gamma }_n(x))^2\right) = a_n{\mathbb E}\left( f_{\delta }({\gamma }_n(x))^2\mathbbm {1}_{\{{\gamma }_n(x)>1\}}\right) + a_n{\mathbb E}\left( f_{\delta }({\gamma }_n(x))^2\mathbbm {1}_{\{{\gamma }_n(x)\le 1\}}\right) . \end{aligned}$$
(A.9)

For the first summand we use again the bound on f and the definition of the time-scale to bound it by \({\delta }^4\). And for the second summand we use the same method as for (2): applying Gaussian estimates, expanding the resulting term and plugging in the exact representation of \(c_n\). The bound we obtain is a constant. Putting these estimates together we have for n large enough

$$\begin{aligned} \textstyle a_n{\mathbb E}\left( f_{\delta }({\gamma }_n(x))^2\right) \le {\delta }^4+c_1. \end{aligned}$$
(A.10)

   \(\square \)

In the verification of Condition (A3) a slightly different function \(g_{\delta }\) appeared. In the forthcoming lemma we control the first and second moment of \(g_{\delta }({\gamma }_n(x))\) when \(0<{\alpha }(\varepsilon )<1\).

Lemma A.2

Let \(c_n\) be an intermediate time-scale and \(0<{\beta }<\infty \) and \(0<{\alpha }(\varepsilon )<1\). Then there exists constants \(c_3\) and \(c_4\) such that the following holds for n large enough

$$\begin{aligned} a_n{\mathbb E}\left( g_{\delta }({\gamma }_n(x))\right) \le c_3 {\delta }^{1-{\alpha }(\varepsilon )}, \end{aligned}$$
(A.11)
$$\begin{aligned} a_n{\mathbb E}\left( g_{\delta }({\gamma }_n(x))^2\right) \le c_4. \end{aligned}$$
(A.12)

Proof

We observe that

$$\begin{aligned} g_{\delta }(u) \le {\delta }\quad \forall u>0. \end{aligned}$$
(A.13)

As in the proof of the previous lemma we write

$$\begin{aligned} a_n{\mathbb E}\left( g_{\delta }({\gamma }_n(x))\right) = a_n{\mathbb E}\left( g_{\delta }({\gamma }_n(x))\mathbbm {1}_{\{{\gamma }_n(x)>{\delta }\}}\right) +a_n{\mathbb E}\left( g_{\delta }({\gamma }_n(x))\mathbbm {1}_{\{{\gamma }_n(x)\le {\delta }\}}\right) \equiv (1) + (2). \nonumber \end{aligned}$$

The first summand (1) we control by

$$\begin{aligned} (1) \le {\delta }a_n{\mathbb P}\left( {\gamma }_n(x)>{\delta }\right) \sim {\delta }^{1-{\alpha }(\varepsilon )}. \end{aligned}$$
(A.14)

For (2) we use Gaussian estimates.

$$\begin{aligned} (2)\le & {} a_n{\mathbb E}\left( {\gamma }_n(x) \mathbbm {1}_{{\gamma }_n(x)\le {\delta }}\right) = \frac{a_ne^{n{\beta }^2/2}}{c_n}\int _{-\infty }^{\frac{\log (c_n{\delta })}{\sqrt{n}{\beta }}-\sqrt{n}{\beta }} \frac{e^{-u^2/2}}{\sqrt{2\pi }}\text{ d }u\nonumber \\\sim & {} \frac{a_ne^{n{\beta }^2/2}}{c_n} \left( \sqrt{2\pi }\left( \sqrt{n}{\beta }-\frac{\log (c_n{\delta })}{\sqrt{n}{\beta }}\right) \right) ^{-1}e^{-\frac{1}{2}\left( \frac{\log (c_n{\delta })}{\sqrt{n}{\beta }}-\sqrt{n}{\beta }\right) ^2}, \end{aligned}$$
(A.15)

where we used that since \({\beta }>{\beta }_c(\varepsilon )\) we have by (3.21) \(\frac{\log (c_n{\delta })}{\sqrt{n}{\beta }}-\sqrt{n}{\beta }\rightarrow -\infty \) as \(n\rightarrow \infty \). Now, expanding the terms and inserting the exact representation of \(c_n\), (A.15) is equal to

$$\begin{aligned} {\delta }a_n\left( \sqrt{2\pi }\left( \sqrt{n}{\beta }-\frac{\log (c_n{\delta })}{\sqrt{n}{\beta }}\right) \right) ^{-1} e^{-\frac{1}{2}\left( \frac{\log (c_n{\delta })}{\sqrt{n}{\beta }}\right) ^2} \le c_3' {\delta }^{1-{\alpha }(\varepsilon )}, \end{aligned}$$
(A.16)

for some constant \(0<c_3'<\infty \). Putting the estimates on (1) and (2) together we get that there exists a constant \(0<c_3<\infty \) such that

$$\begin{aligned} a_n{\mathbb E}\left( g_{\delta }({\gamma }_n(x))\right) \le c_3 {\delta }^{1-{\alpha }(\varepsilon )}. \end{aligned}$$
(A.17)

To control \(a_n{\mathbb E}\left( g_{\delta }({\gamma }_n(x))^2\right) \) one proceeds in exactly the same way.    \(\square \)

To study the behavior of \(M_n(t)\), and in particular to check Condition (B1), we needed a control on the moments of \(g_1({\gamma }_n(x))\) when \({\beta }={\beta }_c(\varepsilon )\) which is done in the next lemma.

Lemma A.3

Let \(c_n\) be an intermediate scale.

  1. (i)

    Let \({\beta }={\beta }_c(\varepsilon )\). Then

    $$\begin{aligned} {\mathbb E}\left( g_1({\gamma }_n(x))\right) \le \frac{e^{n{\beta }^2/2}}{c_n}(1+o(1)). \end{aligned}$$
    (A.18)

    Moreover, if \(\lim _{n\rightarrow \infty }\sqrt{n}{\beta }-\frac{\log c_n}{\beta \sqrt{n}} = \theta \) for some \(\theta \in (-\infty ,\infty )\). Then,

    $$\begin{aligned} a_n{\mathbb E}\left( g_1({\gamma }_n(x))\right) = \Phi (\theta ) \frac{a_ne^{n{\beta }^2/2}}{c_n}(1+o(1)) = \Phi (\theta )\beta \sqrt{2n\pi } e^{\theta ^2/2}(1+o(1)). \end{aligned}$$
    (A.19)
  2. (ii)

    Let \({\beta }={\beta }_c(\varepsilon )\). For n large enough there exists a constant \(0<c_2<\infty \) such that

    $$\begin{aligned} a_n {\mathbb E}\left( g_1({\gamma }_n(x))^l\right) \le c_2, \quad 2\le l\le 4. \end{aligned}$$
    (A.20)
  3. (iii)

    Let \(\beta <\beta _c\). Then

    $$\begin{aligned} {\mathbb E}\left( g_1({\gamma }_n(x))\right) = \frac{e^{n{\beta }^2/2}}{c_n}(1+o(1)). \end{aligned}$$
    (A.21)

    If \(\beta >\beta _c/2\), then

    $$\begin{aligned} a_n {\mathbb E}\left( g_1({\gamma }_n(x))^2\right) \le c_2 . \end{aligned}$$
    (A.22)

    Otherwise \(a_n {\mathbb E}\left( g_1({\gamma }_n(x))^2\right) \le a_ne^{2n\beta ^2}/c_n^2\) and

    $$\begin{aligned} \log \frac{a_n {\mathbb E}\left( g_1({\gamma }_n(x))^2\right) }{a_n^2 e^{n\beta ^2}/c_n^2}= n(2\beta -\beta _c)/2. \end{aligned}$$
    (A.23)

Proof

Recall that \(g_1(u) \le 1\), \( \forall u>0\). To prove assertion (i) we rewrite \({\mathbb E}\left( g_1({\gamma }_n(x))\right) \) as

$$\begin{aligned}&\frac{e^{n{\beta }^2/2}}{\sqrt{2\pi }c_n} \int _{-\infty }^{\infty } e^{\sqrt{n}{\beta }z }\left( 1-e^{-c_n e^{-\sqrt{n}{\beta }z}}\right) e^{-z^2/2}\text{ d }z\nonumber \\= & {} \frac{e^{n{\beta }^2/2} }{c_n} - \frac{ e^{n{\beta }^2/2}}{c_n {\beta }\sqrt{2 \pi n}} \int _{-\infty }^{\infty } e^{y+\log c_n}e^{-\left( \frac{y}{{\beta }\sqrt{n}}+\frac{\log c_n}{{\beta }\sqrt{n}}\right) ^2- e^{-y}}\text{ d }y. \end{aligned}$$
(A.24)

Now one can cut the domain of integration into different pieces. Observe that in the region \(y>\log n\) the integral is equal to

$$\begin{aligned}&(1+o(1))\frac{e^{n{\beta }^2/2}}{c_n {\beta }\sqrt{2\pi n}} \int ^{\infty }_{\log n} e^{y+\log c_n}e^{-\left( \frac{y}{{\beta }\sqrt{n}}+\frac{\log c_n}{{\beta }\sqrt{n}}\right) ^2/2}\text{ d }y\nonumber \\= & {} (1+o(1))\frac{ e^{n{\beta }^2/2}}{c_n\sqrt{2\pi }}\int ^{\infty }_{\frac{\log n}{\sqrt{n}{\beta }} -\frac{\log c_n}{{\beta }\sqrt{n}}+\sqrt{n}{\beta }}e^{-y^2/2}\text{ d }y. \end{aligned}$$
(A.25)

If \(\sqrt{n}{\beta }-\frac{\log c_n}{\beta \sqrt{n}} \rightarrow \theta \) for some constant \(\theta \) as \(n\rightarrow \infty \) we have that (A.24) is equal to \( (1+o(1))\frac{e^{n{\beta }^2/2}}{c_n}(1-\Phi (\theta ))\). Proceeding as in (A.25) one can bound the integral in (A.24) on the domain of integration \(|y|<\log n\) by \(o(1)\frac{ e^{n{\beta }^2/2}}{c_n}\). For \(y<-\log n\), \(e^{-y}>n\) which implies that the on that part of the domain of integration the integral in (A.24) is equal to \(o(1)\frac{ e^{n{\beta }^2/2}}{c_n}\). This yields the first equality in (A.19), and as the Gaussian integral is always between zero and one, this also implies (A.18). The second inequality in (A.19) follows from the first by (B.5) of Lemma B.2. We now turn to assertion (ii) and consider \({\mathbb E}\left( g_1({\gamma }_n(x))^2\right) \). We will split this term into two terms:

$$\begin{aligned} a_n {\mathbb E}\left( g_1({\gamma }_n(x))^2\right) = a_n{\mathbb E}\left( g_1({\gamma }_n(x))^2\mathbbm {1}_{\{{\gamma }_n(x)>1\}}\right) +a_n {\mathbb E}\left( g_1({\gamma }_n(x))^2\mathbbm {1}_{\{{\gamma }_n(x)\le 1\}}\right) \equiv (1) + (2). \nonumber \end{aligned}$$

For (1) we use the definition of the scaling \(a_n\) and \(c_n\) and the bound (A.13)

$$\begin{aligned} (1) \le a_n{\mathbb P}\left( {\gamma }_n(x)>1\right) = 1. \end{aligned}$$
(A.26)

For Term (2) we use exact Gaussian estimates to bound

$$\begin{aligned} (2)\le & {} \frac{a_n}{c_n^2} \int _{-\infty }^{\frac{\log c_n}{\sqrt{n}{\beta }}} e^{2{\beta }\sqrt{n} u}\left( 1-e^{- c_ne^{-\sqrt{n}{\beta }u}}\right) ^2 \frac{e^{-u^2/2}}{\sqrt{2\pi }} \text{ d }u\nonumber \\\le & {} \frac{a_n e^{2n{\beta }^2}}{c_n^2}\int _{-\infty }^{\frac{\log c_n}{\sqrt{n}{\beta }}-2\sqrt{n}{\beta }} \frac{e^{-r^2/2}}{\sqrt{2\pi }} \text{ d }r\nonumber \\\sim & {} \frac{a_n e^{2n{\beta }^2}}{c_n^2} \left( \sqrt{2\pi }\left( -\frac{\log c_n}{\sqrt{n}{\beta }}+2\sqrt{n}{\beta }\right) \right) ^{-1}e^{-\left( \frac{\log c_n}{\sqrt{n}{\beta }}-2\sqrt{n}{\beta }\right) ^2/2}, \end{aligned}$$
(A.27)

where we use that by (3.22), \(\frac{\log c_n}{\sqrt{n}{\beta }}-2\sqrt{n}{\beta }\rightarrow -\infty \) as \(n\rightarrow \infty \). Plugging in (3.22) yields

$$\begin{aligned} (A.27) = a_n \left( \sqrt{2\pi }\left( -\frac{\log c_n}{\sqrt{n}{\beta }}+2\sqrt{n}{\beta }\right) \right) ^{-1} e^{-\left( \frac{\log c_n}{\sqrt{n}{\beta }}\right) ^2/2} = c_2'(1+o(1)), \end{aligned}$$
(A.28)

where \(0<c_2'<\infty \). Putting both estimates together we get that for n large there exists a constant \(0< c_2<\infty \) such that

$$\begin{aligned} a_n {\mathbb E}\left( g_1({\gamma }_n(x))^2\right) \le c_2 . \end{aligned}$$
(A.29)

Proceeding in exactly the same way with \(a_n {\mathbb E}\left( g_1({\gamma }_n(x))^3\right) \) and \(a_n {\mathbb E}\left( g_1({\gamma }_n(x))^4\right) \), one readily obtains (A.20) for \(l=3\) and \(l=4\).

Part (iii) follows from computations similar to those of (i) and (ii). (A.23) follows from (3.20).    \(\square \)

Appendix B. The Centering Term \(M_n(t)\) at Criticality

In this appendix we collect the fine asymptotics needed to control the centering term \(M_n(t)\) on the critical line \({\beta }={\beta }_c(\varepsilon )\), \(0<\varepsilon \le 1\). Computing \({\mathbb E}\left( {\mathcal E}\left( M_n(t) \right) \right) \) at \({\beta }={\beta }_c(\varepsilon )\) gives

$$\begin{aligned} {\mathbb E}\left( {\mathcal E}\left( M_n(t) \right) \right)= & {} {\mathbb E}\left( \sum _{i=1}^{[a_nt]} {\mathcal E}\left( c_n^{-1}{\tau _n(J_n(i)) e_{n,i}}1_{\left\{ 0<c_n^{-1}{\tau _n(J_n(i)) e_{n,i}}<1 \right\} } \right) \right) \nonumber \\= & {} \lfloor a_nt\rfloor {\mathbb E}\left( g_1({\gamma }_n(x))\right) = c t\frac{a_ne^{n{\beta }^2/2}}{c_n}(1+o(1)), \end{aligned}$$
(B.1)

where by the first equality in (A.19) c is some constant \(>0\). The following lemma proves the general diverging behavior of \({\mathbb E}({\mathcal E}(M_n(1))\). Recall the notation (1.3)–(1.11) of Definition 1.1.

Lemma B.1

Given \(0<\varepsilon \le 1\), let \(a_n\) and \(c_n\) be sequences satisfying (1.3) and (1.4) and let \({\beta }={\beta }_c(\varepsilon )\). Then

$$\begin{aligned} \lim _{n\rightarrow \infty } \frac{a_ne^{n{\beta }^2/2}}{c_n} = \infty . \end{aligned}$$
(B.2)

Proof

By (3.20) with \({\beta }={\beta }_c(\varepsilon )\), \(\log a_n = \frac{1}{2}(n{\beta }^2+f(n))\) for some sequence f(n) such that \(\frac{f(n)}{n{\beta }^2}=o(1)\). Furthermore, by (3.21), \(\log (\log a_n) = \log (\frac{n{\beta }^2+f(n)}{2})\) and \(\sqrt{2\log a_n}= \sqrt{n{\beta }^2+f(n)}\). Note that due to the asymptotic behavior of f(n), \(\log (\log a_n)\) is positive for n large enough. Hence it suffices to show that

$$\begin{aligned} \frac{\log (a_n e^{n{\beta }^2/2})}{\sqrt{n}{\beta }} \ge \sqrt{2\log a_n}. \end{aligned}$$
(B.3)

Plugging in the expressions for \(\log a_n\), (B.3) reads

$$\begin{aligned} \sqrt{n}{\beta }+ \frac{f(n)}{2\sqrt{n}{\beta }}\ge \sqrt{n{\beta }^2 + f(n)}, \end{aligned}$$
(B.4)

which is always satisfied and equality holds if and only if \(f(n)=0\).    \(\square \)

Lemma B.2

If in addition to the assumptions of Lemma B.1, \(\lim _{n\rightarrow \infty }\frac{\log c_n}{\sqrt{n}\beta }-\sqrt{n}\beta =\theta \) for some \(\theta \in (-\infty ,\infty )\), then

$$\begin{aligned} \lim _{n\rightarrow \infty }\sqrt{n}\frac{c_n}{a_ne^{n\beta ^2/2}}=\frac{1}{\beta \sqrt{2\pi } } e^{-\theta ^2/2}. \end{aligned}$$
(B.5)

Proof

Using the notation of the proof of Lemma B.1, (B.5) follows from (3.21) with \(\lim _{n\rightarrow \infty } \frac{f(n)}{2\sqrt{n}\beta }=\theta \). Namely, under the assumption of the lemma, (3.21) may be written as

$$\begin{aligned} c_n=\frac{1}{\beta \sqrt{2\pi n}} e^{n\beta ^2+\frac{f(n)}{2}-\frac{1}{8}\left( \frac{f(n)}{\beta \sqrt{n}}\right) ^2+o(1)} \end{aligned}$$
(B.6)

by Taylor expansion of the square root. Equation (B.6) also implies that \(\lim _{n\rightarrow \infty }\frac{\log c_n}{\sqrt{n}\beta }-\sqrt{n}\beta =\theta \) if and only if \(\lim _{n\rightarrow \infty } \frac{f(n)}{2\sqrt{n}\beta }=\theta \).    \(\square \)

Appendix C. Auxiliary Lemmas Needed in the Proof of Theorem 1.5

Recall that \(\widetilde{a}_n\) and \(A_n(t)\) are defined in (8.1) and (8.3), respectively.

Lemma C.1

Let \(c_n\) be an intermediate scale with \(\lim _{n\rightarrow \infty }\frac{\log c_n}{\sqrt{n}\beta }-\sqrt{n}\beta =\theta \) for some \(\theta \in (-\infty ,\infty )\) and \({\beta }={\beta }_c(\varepsilon )\) with \(0<\varepsilon \le 1\). If \(\sum a_n/2^n<\infty \) we have for all \(t,s>0\) and for all \(\epsilon >0\), \({\mathbb P}\)-a.s.

$$\begin{aligned} \lim _{n\rightarrow \infty }\sqrt{n} {\mathcal P}\left( \left| \sum _{k=1}^{\lfloor \widetilde{a}_nt\rfloor } {\mathcal P}\Bigl ({\tau }_n(J_n(k+1))e_{n,k+1}>c_ns|J_n(k)\Bigr ) -\frac{\widetilde{a}_nt}{a_ns}\right| >\frac{\widetilde{a}_n\epsilon }{a_n\sqrt{A_n(t)}} \right) = 0 \end{aligned}$$
(C.1)

If \(\sum a_n/2^n=\infty \) the same holds in \({\mathbb P}\)-probability.

Proof

Proceeding as in the the proof of Proposition 5.1 one readily establishes that

$$\begin{aligned}&{\mathcal P}\left( \left| \sum _{k=1}^{\lfloor \widetilde{a}_nt\rfloor } {\mathcal P}\Bigl ({\tau }_n(J_n(k+1))e_{n,k+1}>c_ns|J_n(k)\Bigr ) -\frac{\lfloor \widetilde{a}_nt\rfloor }{a_n}\nu _n(s,\infty )\right| >\frac{\widetilde{a}_n\epsilon }{a_n\sqrt{A_n(t)}}\right) \nonumber \\&\le \left( \frac{a_n \sqrt{A_n(t)}}{\widetilde{a}_n \epsilon }\right) ^2 \left( \left( \frac{\lfloor \widetilde{a}_nt\rfloor }{a_n}\right) ^2\frac{\nu _n^2(u,\infty )}{2^{n-1}} +\frac{\lfloor \widetilde{a}_nt\rfloor }{a_n}\Theta ^1_n(u)\right) . \end{aligned}$$
(C.2)

where \(\Theta ^1_n(u)\) is defined in (5.7). Using Proposition 6.1 and (8.2) yields the claim of Lemma C.1.    \(\square \)

Lemma C.2

Let \(c_n\) be an intermediate scale with \(\lim _{n\rightarrow \infty }\frac{\log c_n}{\sqrt{n}\beta }-\sqrt{n}\beta =\theta \) for some \(\theta \in (-\infty ,\infty )\) and \({\beta }={\beta }_c(\varepsilon )\) with \(0<\varepsilon \le 1\). Then we have for all \(x>0\) that \({\mathbb P}\)-a.s.

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{a_n}{\widetilde{a}_n}\sum _{l=1}^{\theta _n}{\mathcal P}\left( {\tau }_n(J_n(k+1)e_{n,k+1}>c_n x\right) =0. \end{aligned}$$
(C.3)

Proof

Using a first order Tchebychev inequality we have

$$\begin{aligned} {\mathbb P}\left( \frac{a_n}{\widetilde{a}_n}\sum _{l=1}^{\theta _n}{\mathcal P}\left( {\tau }_n(J_n(k+1)e_{n,k+1}>c_nx\right) >\epsilon \right) \le \epsilon ^{-1} \frac{a_n}{\widetilde{a}_n}\frac{\theta _n}{a_n}{\mathbb E}\nu _n(x,\infty ). \end{aligned}$$
(C.4)

In view of Lemma 6.2 and since \(\sum \frac{\theta _n}{\widetilde{a}_n}<\infty \), the claim of Lemma C.2 follows.    \(\square \)

Lemma C.3

Let \(c_n\) be an intermediate scale with \(\lim _{n\rightarrow \infty }\frac{\log c_n}{\sqrt{n}\beta }-\sqrt{n}\beta =\theta \) for some \(\theta \in (-\infty ,\infty )\) and \({\beta }={\beta }_c(\varepsilon )\) with \(0<\varepsilon \le 1\). If \(\sum a_n/2^n<\infty \) we have for all \(t,s>0\) and for all \(\epsilon '>0\) that \({\mathbb P}\)-a.s.

$$\begin{aligned} \lim _{n\rightarrow \infty }\sqrt{n}{\mathcal P}\left( M_n(\lfloor \widetilde{a}_nt(1+\epsilon ')/a_n\rfloor ) < t\right) =0. \end{aligned}$$
(C.5)

If \(\sum a_n/2^n=\infty \) the same holds in \({\mathbb P}\)-probability.

Proof

Observe first that \(M_n(\lfloor \widetilde{a}_nt(1+\epsilon ')/a_n\rfloor )=M_n(ct/\sqrt{n})\) for some constant c. We know from Proposition (5.4) and Lemma 6.5 that it concentrates around \({\mathcal E}M_n(\lfloor \widetilde{a}_nt(1+\epsilon ')/a_n\rfloor )\) either \({\mathbb P}\)-a.s. or in \({\mathbb P}\)-probability and the bounds are in the worst case linear in t. Moreover by linearity of \(yyy{\mathcal E}M_n(\lfloor \widetilde{a}_nt(1+\epsilon ')/a_n\rfloor )\) and Lemma 6.5 the claim of Lemma C.3 follows.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gayrard, V., Hartung, L. (2019). Dynamic Phase Diagram of the REM. In: Gayrard, V., Arguin, LP., Kistler, N., Kourkova, I. (eds) Statistical Mechanics of Classical and Disordered Systems . StaMeClaDys 2018. Springer Proceedings in Mathematics & Statistics, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-030-29077-1_6

Download citation

Publish with us

Policies and ethics