Skip to main content

One-Sided Versus Two-Sided Stochastic Descriptions

  • Conference paper
  • First Online:
  • 518 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 293))

Abstract

It is well-known that discrete-time finite-state Markov Chains, which are described by one-sided conditional probabilities which describe a dependence on the past as only dependent on the present, can also be described as one-dimensional Markov Fields, that is, nearest-neighbor Gibbs measures for finite-spin models, which are described by two-sided conditional probabilities. In such Markov Fields the time interpretation of past and future is being replaced by the space interpretation of an interior volume, surrounded by an exterior to the left and to the right. If we relax the Markov requirement to weak dependence, that is, continuous dependence, either on the past (generalising the Markov-Chain description) or on the external configuration (generalising the Markov-Field description), it turns out this equivalence breaks down, and neither class contains the other. In one direction this result has been known for a few years, in the opposite direction a counterexample was found recently. Our counterexample is based on the phenomenon of entropic repulsion in long-range Ising (or “Dyson”) models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We denote \(\mu [f]\) for the expectation \(\mathbb {E}_\mu [f]\) under a measure \(\mu \).

  2. 2.

    Expressing that \(\forall \Lambda \in \mathcal {S},\; \forall A \in \mathcal {F}_\Lambda \), \(\rho (A)>0\) implies that \(\gamma _\Lambda (A | \omega ) >0\) for any \(\omega \in \Omega \).

References

  1. Aizenman, M., Chayes, J., Chayes, L., Newman, C.: Discontinuity of the Magnetization in the One-Dimensional \(1/\mid x-y \mid ^2\) Percolation, Ising and Potts Models. J. Stat. Phys. 50(1/2), 1–40 (1988)

    Article  MATH  Google Scholar 

  2. Berger, N., Hoffman, C., Sidoravicius, V.: Nonuniqueness for specifications in \(l^{2+ \epsilon }\) (2003). arXiv:math/0312344. Erg. Theory Dyn. Syst. 38, 1342–1352 (2018)

  3. Berghout, S., Fernández, R., Verbitskiy, E.: On the Relation between Gibbs and \(g\)-measures. Erg. Theory Dyn. Syst. (to appear)

    Google Scholar 

  4. Bethuelsen, S.A., Conache, D.: One-sided continuity properties for the Schonmann projection. J. Stat. Phys. 172, 1147–1163 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bissacot, R., Endo, E.O., van Enter, A.C.D., Le Ny, A.: Entropic repulsion and lack of the g-measure property for Dyson models. Commun. Math. Phys. 363, 767–788 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bissacot, R., Endo, E.O., van Enter, A.C.D., Kimura, B., Ruszel, W.M.: Contour methods for long-range Ising models: weakening nearest-neighbor interactions and adding decaying fields. Ann. Henri Poincaré 19, 2557–2574 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bovier, A.: Statistical mechanics of disordered systems. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  8. Bramson, M., Kalikow, S.: Non-uniqueness in \(g\)-functions. Isr. J. Math. 84, 153–160 (1993)

    Article  MATH  Google Scholar 

  9. Bricmont, J., Lebowitz, J., Pfister, C.-E.: On the equivalence of boundary conditions. J. Stat. Phys. 21(5), 573–582 (1979)

    Article  MathSciNet  Google Scholar 

  10. Cassandro, M., Ferrari, P.A., Merola, I., Presutti, E.: Geometry of contours and Peierls estimates in \(d=1\) Ising models with long range interactions. J. Math. Phys. 46(5), 0533305 (2005)

    Google Scholar 

  11. Cassandro, M., Merola, I., Picco, P., Rozikov, U.: One-dimensional Ising models with long range interactions: cluster expansion, phase-separating point. Commun. Math. Phys. 327, 951–991 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cassandro, M., Merola, I., Picco, P.: Phase separation for the long range one-dimensional Ising model. J. Stat. Phys. 167(2), 351–382 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cassandro, M., Orlandi, E., Picco, P.: Phase transition in the 1D random field Ising model with long range interaction. Commun. Math. Phys. 288, 731–744 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Coquille, L., van Enter, A.C.D., Le Ny, A., Ruszel, W.M.: Absence of Dobrushin states for \(2d\) long-range Ising models. J. Stat. Phys. 172, 1210–1222 (2018)

    Google Scholar 

  15. Dobrushin, R.L.: The description of a random field by means of conditional probabilities and conditions of its regularity. Theory Prob. Appl. 13, 197–224 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  16. Doeblin, W., Fortet, R.: Sur les chaines à liaisons complètes. Bull. Soc. Math. Fr. 65, 132–148 (1937)

    Article  MATH  Google Scholar 

  17. Dyson, F.J.: Existence of a phase transition in a one-dimensional Ising ferromagnet. Commun. Math. Phys. 12, 91–107 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  18. van Enter, A.C.D.: On a question of Bratteli and Robinson. Lett. Math. Phys. 6, 289–291 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. van Enter, A.C.D., Fernández, R., Sokal, A.D.: Regularity properties and pathologies of position-space R.G. transformations: scope and limitations of Gibbsian theory. J. Stat. Phys. 72, 879–1167 (1993)

    Google Scholar 

  20. van Enter, A.C.D., Kimura, B., Ruszel, W.M., Spitoni, C.: Nucleation for one-dimensional long-range Ising models (2018). arXiv:1809.02243

  21. van Enter, A.C.D., Le Ny, A.: Decimation of the Dyson-Ising ferromagnet. Stoch. Proc. Appl. 127, 3776–3791 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. van Enter, A.C.D., Verbitskiy, E.: Erasure entropies and Gibbs measures. Markov Proc. Rel. Fields 16, 3–14 (2010)

    Google Scholar 

  23. Fernández, R.: Gibbsianness and non-Gibbsianness in Lattice random fields. In: Bovier, A., van Enter, A.C.D., den Hollander, F., Dunlop, F. (eds.) Mathematical Statistical Physics. Proceedings of the 83rd Les Houches Summer School (July 2005). Elsevier, New York (2006)

    Google Scholar 

  24. Fernández, R., Gallo, S., Maillard, G.: Regular \(g\)-measures are not always Gibbsian. El. Commun. Prob. 16, 732–740 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fernández, R., Maillard, G.: Chains with complete connections and one-dimensional Gibbs measures. Electron. J. Prob. 9, 145–176 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fernández, R., Maillard, G.: Chains with complete connections: general theory, uniqueness, loss of memory and mixing properties. J. Stat. Phys. 118, 555–588 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fernández, R., Pfister, C.-E.: Global specifications and non-quasilocality of projections of Gibbs measures. Ann. Prob. 25(3), 1284–315 (1997)

    Article  MATH  Google Scholar 

  28. Föllmer, H.: On the global Markov property. In: Streit, L. (ed.) Quantum fields: algebras, processes, pp. 293–302. Springer, New York (1980)

    Chapter  Google Scholar 

  29. Föllmer, H., Snell, J.L.: An “Inner” variational principle for Markov fields on a graph. Z. Wahrsch. verw. Geb. 39, 187–195 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22, 89–103 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  31. Friedli, S., Velenik, Y.: Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  32. Fröhlich, J., Israel, R.B., Lieb, E.H., Simon, B.: Phase transitions and reflection positivity. I. General theory and long range lattice models. Commun. Math. Phys. 62, 1–34 (1978)

    Article  MathSciNet  Google Scholar 

  33. Fröhlich, J., Spencer, T.: The phase transition in the one-dimensional Ising model with \(1/r^2\) interaction energy. Commun. Math. Phys. 84, 87–101 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  34. H.O. Georgii. Gibbs Measures and Phase Transitions. De Gruyter Studies in Mathematics, Vol 9, Berlin–New York, 1988, 2nd Edition 2011

    Google Scholar 

  35. Goldstein, S.: Remarks on the global Markov property. Commun. Math. Phys. 74, 223–234 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gurevich, B.M.: On one-sided and two-sided regularity of stationary random processes. Dokl. Akad. Nauk SSSR 210, 763–766 (1973)

    MathSciNet  Google Scholar 

  37. Harris, T.E.: On chains of infinite order. Pac. J. Math. 5, 707–724 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  38. den Hollander, F., Steif, J.E.: On the equivalence of certain ergodic properties for Gibbs states. Erg. Theory Dyn. Syst. 20, 231–239 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Imbrie, J.: Decay of correlations in one-dimensional Ising model with \(J_{ij}=\mid i-j \mid ^{-2}\). Commun. Math. Phys. 85, 491–515 (1982)

    Article  MathSciNet  Google Scholar 

  40. Imbrie, J., Newman, C.M.: An intermediate phase with slow decay of correlations in one-dimensional \(1/\mid x-y \mid ^2\) percolation, Ising and Potts models. Commun. Math. Phys. 118, 303–336 (1988)

    Google Scholar 

  41. Israel, R.B.: Some examples concerning the global Markov property. Commun. Math. Phys. 105, 669–673 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  42. Johansson, K.: Condensation of a one-dimensional lattice gas. Commun. Math. Phys. 141, 41–61 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kac, M., Thompson, C.J.: Critical behaviour of several lattice models with long-range interaction. J. Math. Phys. 10, 1373–1386 (1968)

    Article  MATH  Google Scholar 

  44. Kalikow, S.: Random Markov processes and uniform martingales. Isr. J. Math. 71, 33–54 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  45. Keane, M.: Strongly mixing \(g\)-measures. Invent. Math. 16, 309–324 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kozlov, O.: Gibbs description of a system of random variables. Probl. Inform. Transm. 10, 258–265 (1974)

    MathSciNet  Google Scholar 

  47. Lanford, O.E., Ruelle, D.: Observables at infinity and states with short range correlations in statistical mechanics. Commun. Math. Phys. 13, 194–215 (1969)

    Article  MathSciNet  Google Scholar 

  48. Le Ny, A.: Introduction to generalized Gibbs measures. Ensaios Matemáticos 15 (2008)

    Google Scholar 

  49. Littin, J., Picco, P.: Quasiadditive estimates on the Hamiltonian for the one-dimensional long-range Ising model. J. Math. Phys. 58, 073301 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Onicescu, O., Mihoc, G.: Sur les chaines statistiques. C. R. Acad. Sci. Paris 200, 511–512 (1935)

    MATH  Google Scholar 

  51. Ornstein, D.S., Weiss, B.: Every transformation is bilaterally deterministic. Isr. J. Math. 21, 154–158 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  52. Rozikov, U.: Gibbs Measures on Cayley Graphs. World Scientific, Singapore (2013)

    Google Scholar 

  53. Ruelle, D.: Thermodynamic Formalism, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  54. Ruelle, D.: On the use of “small external fields” in the problem of symmetry breakdown in statistical mechanics. Ann. Phys. 69, 364–374 (1972)

    Article  Google Scholar 

  55. Schonmann, R.H.: Projections of Gibbs measures may be non-Gibbsian. Commun. Math. Phys. 124, 1–7 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  56. Sullivan, W.G.: Potentials for almost Markovian random fields. Commun. Math. Phys. 33, 61–74 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  57. Tempelman, A.A.: Specific characteristics and variational principle for homogeneous random fields. Z. Wahrsch. verw. Geb. 65, 341–265 (1984)

    Google Scholar 

  58. Verdú, S., Weissman, T.: The information lost in erasures. IEEE Trans. Inf. Theory 57, 5030–5058 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I dedicate this paper with pleasure to Anton Bovier, on the occasion of his 60th birthday. Anton has been a reliable and stimulating guide for me in matters literary, culinary and scientific, for more than 30 years. His many-sided personality and friendship have enriched my life in many respects. I wish him many more years, and look forward to have a share therein. I thank my collaborators and discussion partners on Dyson models, long-range models and g-measures for the pleasure of these collaborations and for all I have learned from them. In alphabetical order I owe: Stein Bethuelsen, Rodrigo Bissacot, Diana Conache, Loren Coquille, Eric Endo, Roberto Fernández, Frank den Hollander, Bruno Kimura, Arnaud Le Ny, Brian Marcus, Pierre Picco, Wioletta Ruszel, Cristian Spitoni, Siamak Taati and Evgeny Verbitskiy. I thank Eric, Siamak and Arnaud for helpful advice on the manuscript. I thank Louis-Pierre Arguin, Veronique Gayrard, Nicola Kistler and Irina Kourkova for inviting me to be present at the CIRM meeting to celebrate Anton, and also to contribute to this volume.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aernout C. D. van Enter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van Enter, A.C.D. (2019). One-Sided Versus Two-Sided Stochastic Descriptions. In: Gayrard, V., Arguin, LP., Kistler, N., Kourkova, I. (eds) Statistical Mechanics of Classical and Disordered Systems . StaMeClaDys 2018. Springer Proceedings in Mathematics & Statistics, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-030-29077-1_2

Download citation

Publish with us

Policies and ethics