Skip to main content

Tightness and Line Ensembles for Brownian Polymers Under Geometric Area Tilts

  • Conference paper
  • First Online:
Statistical Mechanics of Classical and Disordered Systems (StaMeClaDys 2018)

Abstract

We prove tightness and limiting Brownian-Gibbs description for line ensembles of non-colliding Brownian bridges above a hard wall, which are subject to geometrically growing self-potentials of tilted area type. Statistical properties of the resulting ensemble are very different from that of non-colliding Brownian bridges without self-potentials. The model itself was introduced in order to mimic level lines of \(2+1\) discrete Solid-On-Solid random interfaces above a hard wall.

We dedicate this paper to Anton Bovier on the occasion of his 60th birthday.

DI was supported by the Israeli Science Foundation grants 1723/14 and 765/18.

VW was supported by the Humboldt Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  2. Bornemann, F.: On the scaling limits of determinantal point processes with kernels induced by Sturm-Liouville operators. SIGMA Symmetry Integr. Geom.: Methods Appl. 12(83), 1–20 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Caputo, P., Ioffe, D., Wachtel, V.: Confinement of Brownian polymers under geometric area tilts. Electron. J. Probab. 24(37), 1–21

    Google Scholar 

  4. Caputo, P., Lubetzky, E., Martinelli, F., Sly, A., Toninelli, F.L.: Dynamics of \((2+ 1) \)-dimensional SOS surfaces above a wall: slow mixing induced by entropic repulsion. Ann. Probab. 42(4), 1516–1589 (2014)

    Article  MathSciNet  Google Scholar 

  5. Caputo, P., Lubetzky, E., Martinelli, F., Sly, A., Toninelli, F.L.: Scaling limit and cube-root fluctuations in SOS surfaces above a wall. J. Eur. Math. Soc. 18(5), 931–995 (2016)

    Article  MathSciNet  Google Scholar 

  6. Corwin, I., Hammond, A.: Brownian Gibbs property for Airy line ensembles. Invent. Math. 195(2), 441–508 (2014)

    Article  MathSciNet  Google Scholar 

  7. Corwin, I., Hammond, A.: KPZ line ensemble. Probab. Theory Relat. Fields 166(1–2), 67–185 (2016)

    Article  MathSciNet  Google Scholar 

  8. Corwin, I., Sun, X., et al.: Ergodicity of the Airy line ensemble. Electron. Commun. Probab. 19 (2014)

    Google Scholar 

  9. Dai Pra, P., Rœlly, S.: An existence result for infinite-dimensional Brownian diffusions with non-regular and non-Markovian drift. WIAS (2002)

    Google Scholar 

  10. Dauvergne, D., Virág, B.: Basic properties of the Airy line ensemble (2018). arXiv:1812.00311

  11. Dobrokhotov, S.Y., Minenkov, D.S., Shlosman, S.B.: Asymptotics of wave functions of the stationary Schrödinger equation in the Weyl chamber. Theor. Math. Phys. 197(2), 1626–1634 (2018)

    Article  MathSciNet  Google Scholar 

  12. Duits, M.: On global fluctuations for non-colliding processes. Ann. Probab. 46(3), 1279–1350 (2018)

    Article  MathSciNet  Google Scholar 

  13. Ferrari, P.L., Spohn, H., et al.: Constrained Brownian motion: fluctuations away from circular and parabolic barriers. Ann. Probab. 33(4), 1302–1325 (2005)

    Article  MathSciNet  Google Scholar 

  14. Ioffe, D., Shlosman, S.: Formation of facets for an effective model of crystal growth (2017). arXiv:1704.06760

  15. Ioffe, D., Shlosman, S., Toninelli, F.L.: Interaction versus entropic repulsion for low temperature Ising polymers. J. Stat. Phys. 158(5), 1007–1050 (2015)

    Article  MathSciNet  Google Scholar 

  16. Ioffe, D., Velenik, Y.: Ballistic phase of self-interacting random walks. Analysis and Stochastics of Growth Processes and Interface Models, pp. 55–79 (2008)

    Chapter  Google Scholar 

  17. Ioffe, D., Velenik, Y.: Low-temperature interfaces: prewetting, layering, faceting and Ferrari-Spohn diffusions. Markov Processes Relat. Fields 24, 487–537 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Ioffe, D., Velenik, Y., Wachtel, V.: Dyson Ferrari–Spohn diffusions and ordered walks under area tilts. Probab. Theory Relat. Fields, 11–47 (2017)

    Article  MathSciNet  Google Scholar 

  19. Lacoin, H.: Wetting and layering for Solid-on-Solid I: Identification of the wetting point and critical behavior. Commun. Math. Phys., 1–42 (2017)

    Google Scholar 

  20. Lőrinczi, J., Minlos, R.A.: Gibbs measures for Brownian paths under the effect of an external and a small pair potential. J. Stat. Phys. 105(3–4), 605–647 (2001)

    Google Scholar 

  21. Maillard, P., Zeitouni, O.: Slowdown in branching Brownian motion with inhomogeneous variance. Annales de l’Institut Henri Poincare, Probabilites et Statistiques 52(3), 1144–1160 (2016)

    Article  MathSciNet  Google Scholar 

  22. Meerson, B., Smith, N.R.: Geometrical optics of constrained Brownian motion: three short stories (2019). arXiv:1901.04209

  23. Minlos, R., Rœlly, S., Zessin, H.: Gibbs states on space-time. Potential Analysis 13(4), 367–408 (2000)

    Article  MathSciNet  Google Scholar 

  24. Osada, H.: Non-collision and collision properties of Dyson’s model in infinite dimension and other stochastic dynamics whose equilibrium states are determinantal random point fields. In: Stochastic Analysis on Large Scale Interacting Systems, pp. 325–343. Mathematical Society of Japan (2004)

    Google Scholar 

  25. Osada, H., Spohn, H.: Gibbs measures relative to Brownian motion. Ann. Probab., 1183–1207 (1999)

    Google Scholar 

  26. Smith, N.R., Meerson, B.: Geometrical optics of constrained Brownian excursion: from the KPZ scaling to dynamical phase transitions (2018). arXiv:1811.01565

  27. Spohn, H.: Interacting Brownian particles: a study of Dyson’s model. In: Hydrodynamic Behavior and Interacting Particle Systems, pp. 151–179. Springer (1987)

    Google Scholar 

  28. Varopoulos, N.T.: Potential theory in conical domains. Math. Proc. Camb. Philos. Soc. 125(2), 335–384 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Ioffe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caputo, P., Ioffe, D., Wachtel, V. (2019). Tightness and Line Ensembles for Brownian Polymers Under Geometric Area Tilts. In: Gayrard, V., Arguin, LP., Kistler, N., Kourkova, I. (eds) Statistical Mechanics of Classical and Disordered Systems . StaMeClaDys 2018. Springer Proceedings in Mathematics & Statistics, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-030-29077-1_10

Download citation

Publish with us

Policies and ethics