Skip to main content

QR-Decomposition-Based RLS Filters

  • Chapter
  • First Online:
Adaptive Filtering
  • 2413 Accesses

Abstract

The application of QR decomposition [1] to triangularize the input data matrix results in an alternative method for the implementation of the recursive least-squares (RLS) method previously discussed. The main advantages brought about by the recursive least-squares algorithm based on QR decomposition are its possible implementation in systolic arrays [2,3,4] and its improved numerical behavior when quantization effects are taken into account [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reader should note that here the definition of forward prediction error is slightly different from that used in Chaps. 7 and 8, where in the present case we are using the input and desired signals one step ahead. This allows us to use the same information matrix as the conventional QR-Decomposition algorithm of Sect. 9.2.3.

References

  1. G.H. Golub, C.F. Van Loan, Matrix Computations, 2nd edn. (John Hopkins University Press, Baltimore, 1989)

    MATH  Google Scholar 

  2. W.H. Gentleman, H.T. Kung, Matrix triangularization by systolic arrays. Proc. SPIE, Real Time Signal Process. IV 298, 19–26 (1981)

    Google Scholar 

  3. J.G. McWhirter, Recursive least-squares minimization using a systolic array. Proc. SPIE, Real Time Signal Process. VI 431, 105–112 (1983)

    Google Scholar 

  4. J.M. Cioffi, The fast adaptive ROTOR’s RLS algorithm. IEEE Trans. Acoust. Speech Signal Process. 38, 631–653 (1990)

    Article  Google Scholar 

  5. I.K. Proudler, J.G. McWhirter, Y.J. Shepherd, Fast QRD-based algorithms for least squares linear prediction, in Proceedings of the IMA Conference on Mathematics in Signal Processing (Warwick, England, 1988), pp. 465–488

    Google Scholar 

  6. M.G. Bellanger, The FLS-QR algorithm for adaptive filtering. Signal Process. 17, 291–304 (1984)

    Article  MathSciNet  Google Scholar 

  7. M.G. Bellanger, P.A. Regalia, The FLS-QR algorithm for adaptive filtering: the case of multichannel signals. Signal Process. 22, 115–126 (1991)

    Article  Google Scholar 

  8. P.A. Regalia, M.G. Bellanger, On the duality between fast QR methods and lattice methods in least squares adaptive filtering. IEEE Trans. Signal Process. 39, 879–891 (1991)

    Article  Google Scholar 

  9. J.A. Apolinário Jr., P.S.R. Diniz, A new fast QR algorithm based on a priori errors. IEEE Signal Process. Lett. 4, 307–309 (1997)

    Article  Google Scholar 

  10. M.D. Miranda, M. Gerken, A hybrid QR-lattice least squares algorithm using a priori errors. IEEE Trans. Signal Process. 45, 2900–2911 (1997)

    Article  Google Scholar 

  11. A.A. Rontogiannis, S. Theodoridis, New fast QR decomposition least squares adaptive algorithms. IEEE Trans. Signal Process. 46, 2113–2121 (1998)

    Article  Google Scholar 

  12. Z. Chi, J. Ma, K. Parhi, Hybrid annihilation transformation (HAT) for pipelining QRD-based least-square adaptive filters. IEEE Trans. Circ. Syst.-II: Analog. Digit. Signal Process. 48, 661–674 (2001)

    Article  Google Scholar 

  13. C.R. Ward, P.J. Hargrave, J.G. McWhirter, A novel algorithm and architecture for adaptive digital beamforming. IEEE Trans. Antenn. Propag. 34, 338–346 (1986)

    Article  Google Scholar 

  14. W.H. Gentleman, Least squares computations by Givens transformations without square roots. Inst. Maths. Appl. 12, 329–336 (1973)

    Article  MathSciNet  Google Scholar 

  15. W.H. Gentleman, Error analysis of QR decompositions by Givens transformations. Lin. Algebr. Appl. 10, 189–197 (1975)

    Article  MathSciNet  Google Scholar 

  16. H. Leung, S. Haykin, Stability of recursive QRD-LS algorithms using finite-precision systolic array implementation. IEEE Trans. Acoust. Speech Signal Process. 37, 760–763 (1989)

    Article  Google Scholar 

  17. K.J.R. Liu, S.-F. Hsieh, K. Yao, C.-T. Chiu, Dynamic range, stability, and fault-tolerant capability of finite-precision RLS systolic array based on Givens rotations. IEEE Trans. Circ. Syst. 38, 625–636 (1991)

    Article  Google Scholar 

  18. P.S.R. Diniz, M.G. Siqueira, Fixed-point error analysis of the QR-recursive least squares algorithm. IEEE Trans. Circ. Syst. II Analog. Digit. Signal Process. 43, 334–348 (1995)

    Article  Google Scholar 

  19. P.A. Regalia, Numerical stability properties of a QR-based fast least squares algorithm. IEEE Trans. Signal Process. 41, 2096–2109 (1993)

    Article  Google Scholar 

  20. J.A. Apolinário Jr., M.G. Siqueira, P.S.R. Diniz, On fast QR algorithm based on backward prediction errors: New result and comparisons, in Proceedings of the First IEEE Balkan Conference on Signal Processing, Communications, Circuits, and Systems, Istanbul, Turkey, June 2000, CD-ROM (2000), pp. 1–4

    Google Scholar 

  21. P.S. Lewis, QR-based algorithms for multichannel adaptive least squares lattice filters. IEEE Trans. Acoust. Speech Signal Process. 38, 421–432 (1990)

    Article  Google Scholar 

  22. I.K. Proudler, J.G. McWhirter, T.J. Shepherd, Computationally efficient QR decomposition approach to least squares adaptive filtering. IEE Proc. Part F 148, 341–353 (1991)

    Google Scholar 

  23. B. Yang, J.F. Böhme, Rotation-based RLS algorithms: Unified derivations, numerical properties, and parallel implementations. IEEE Trans. Signal Process. 40, 1151–1166 (1992)

    Article  Google Scholar 

  24. F. Ling, Givens rotation based least squares lattice and related algorithms. IEEE Trans. Signal Process. 39, 1541–1551 (1991)

    Article  Google Scholar 

  25. M. Shoaib, S. Werner, J.A. Apolinário Jr., T.I. Laakso, Solution to the weight extraction problem in fast QR-decomposition RLS algorithms, in Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing, Toulouse, France (2006) pp. III-572–III-575

    Google Scholar 

  26. J.M. Cioffi, The fast Householder filters RLS adaptive filter, in Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing, Albuquerque, NM (1990), pp. 1619–1622

    Google Scholar 

  27. K.J.R. Liu, S.-F. Hsieh, K. Yao, Systolic block Householder transformation for RLS algorithm with two-level pipelined implementation. IEEE Trans. Signal Process. 40, 946–957 (1992)

    Article  Google Scholar 

  28. Z.-S. Liu, J. Li, A QR-based least mean squares algorithm for adaptive parameter estimation. IEEE Trans. Circ. Syst.-II Analog. Digit. Signal Process. 45, 321–329 (1998)

    Google Scholar 

  29. A. Ghirnikar, S.T. Alexander, Stable recursive least squares filtering using an inverse QR decomposition, in Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing, Albuquerque, NM (1990), pp. 1623–1626

    Google Scholar 

  30. S.T. Alexander, A. Ghirnikar, A method for recursive least squares filtering based upon an inverse QR decomposition. IEEE Trans. Signal Process. 41, 20–30 (1993)

    Article  Google Scholar 

  31. M. Syed, V.J. Mathews, QR-Decomposition based algorithms for adaptive Volterra filtering. IEEE Trans. Circ. Syst. I: Fund. Theor. Appl. 40, 372–382 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo S. R. Diniz .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diniz, P.S.R. (2020). QR-Decomposition-Based RLS Filters. In: Adaptive Filtering. Springer, Cham. https://doi.org/10.1007/978-3-030-29057-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29057-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29056-6

  • Online ISBN: 978-3-030-29057-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics