Skip to main content

Set-Membership Adaptive Filtering

  • Chapter
  • First Online:
Book cover Adaptive Filtering

Abstract

The families of adaptive filtering algorithms introduced so far present a trade-off between the speed of convergence and the misadjustment after the transient. These characteristics are easily observable in stationary environments. In general fast-converging algorithms tend to be very dynamic, a feature not necessarily advantageous after convergence in a stationary environment. In this chapter, an alternative formulation to govern the updating of the adaptive filter coefficients is introduced. The basic assumption is that the additional noise is considered bounded, and the bound is either known or can be estimated [1]. The  key strategy of the formulation is to find a feasibility set (This set is defined as the set of filter coefficients leading to output errors whose moduli fall below a prescribed upper bound.) such that the bounded error specification is met for any member of this set. As a result, the set-membership filtering (SMF) is aimed at estimating the feasibility set itself or a member of this set [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This set is defined as the set of filter coefficients leading to output errors whose moduli fall below a prescribed upper bound.

  2. 2.

    The reader should note that in earlier definition of the objective function related to the affine projection algorithm a constant \(\frac{1}{2}\) was multiplied to the norm to be minimized. This constant is not relevant and is only used when it simplifies the algorithm derivation.

  3. 3.

    \( \tau _{i} - \frac{1}{2\mathrm{BW}}< \tau < \tau _{i} + \frac{1}{2\mathrm{BW}} \) with \(\mathrm{BW}\) denoting the bandwidth of the transmitted signal.

  4. 4.

    In an actual implementation, \({{\mathbf {x}}}(k)\) originates from the received signal after filtering it through a chip-pulse matched filter and then sampled at chip rate.

References

  1. F.C. Schweppe, Recursive state estimate: unknown but bounded errors and system inputs. IEEE Trans. Autom. Control 13, 22–28 (1968)

    Article  Google Scholar 

  2. E. Fogel, Y.-F. Huang, On the value of information in system identification - bounded noise case. Automatica 18, 229–238 (1982)

    Article  MathSciNet  Google Scholar 

  3. J.R. Deller, Set-membership identification in digital signal processing. IEEE Acoust. Speech Signal Process. Mag. 6, 4–20 (1989)

    Google Scholar 

  4. J.R. Deller, M. Nayeri, S.F. Odeh, Least-squares identification with error bounds for real-time signal processing and control. Proc. IEEE 81, 815–849 (1993)

    Article  Google Scholar 

  5. S. Dasgupta, Y.-F. Huang, Asymptotically convergent modified recursive least-squares with data dependent updating and forgetting factor for systems with bounded noise. IEEE Trans. Inf. Theory 33, 383–392 (1987)

    Article  Google Scholar 

  6. A.K. Rao, Y.-F. Huang, Tracking characteristics of an OBE parameter-estimation algorithm. IEEE Trans. Signal Process. 41, 1140–1148 (1993)

    Article  Google Scholar 

  7. S. Gollamudi, S. Nagaraj, S. Kapoor, Y.-F. Huang, Set-membership filtering and a set-membership normalized LMS algorithm with an adaptive step size. IEEE Signal Process. Lett. 5, 111–114 (1998)

    Article  Google Scholar 

  8. S. Gollamudi, S. Nagaraj, S. Kapoor, Y.-F. Huang, Set-membership adaptive equalization and updator-shared implementation for multiple channel communications systems. IEEE Trans. Signal Process. 46, 2372–2384 (1998)

    Article  Google Scholar 

  9. S. Nagaraj, S. Gollamudi, S. Kapoor, Y.-F. Huang, BEACON: an adaptive set-membership filtering technique with sparse updates. IEEE Trans. Signal Process. 47, 2928–2941 (1999)

    Article  Google Scholar 

  10. P.S.R. Diniz, S. Werner, Set-membership binormalized data reusing LMS algorithms. IEEE Trans. Signal Process. 51, 124–134 (2003)

    Article  MathSciNet  Google Scholar 

  11. S. Werner, P.S.R. Diniz, Set-membership affine projection algorithm. IEEE Signal Process. Lett. 8, 231–235 (2001)

    Article  Google Scholar 

  12. S.C. Douglas, Adaptive filters employing partial updating. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 44, 209–216 (1997)

    Article  Google Scholar 

  13. T. Aboulnasr, K. Mayyas, Complexity reduction of the NLMS algorithm via selective coefficient updating. IEEE Trans. Signal Process. 47, 1421–1427 (1999)

    Article  Google Scholar 

  14. S.C. Douğançay, O. Tanrikulu, Adaptive filtering algorithms with selective partial updating. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 48, 762–769 (2001)

    Article  Google Scholar 

  15. S. Werner, M.L.R. de Campos, P.S.R. Diniz, Partial-update NLMS algorithm with data-selective updating. IEEE Trans. Signal Process. 52, 938–949 (2004)

    Article  MathSciNet  Google Scholar 

  16. S. Werner, M.L.R. de Campos, P.S.R. Diniz, Mean-squared analysis of the partial-update NLMS algorithm. Braz. Telecommun. J. SBrT 18, 77–85 (2003)

    Google Scholar 

  17. M. Godavarti, A.O. Hero III, Partial update LMS algorithms. IEEE Trans. Signal Process. 53, 2384–2399 (2005)

    Article  MathSciNet  Google Scholar 

  18. A. Antoniou, W.-S. Lu, Practical Optimization: Algorithms and Engineering Applications (Springer, New York, 2007)

    MATH  Google Scholar 

  19. J.F. Galdino, J.A. Apolinário Jr., M.L.R. de Campos, A set-membership NLMS algorithm with time-varying error bound, in Proceedings of the IEEE International Symposium on Circuits and Systems, Island of Kos, Greece, May 2006 (2006), pp. 277–280

    Google Scholar 

  20. W.A. Martins, M.V.S. Lima, P.S.R. Diniz, T.N. Ferreira, Optimal constraint vectors for set-membership affine projection algorithms. Signal Process. 134, 285–294 (2017)

    Article  Google Scholar 

  21. H. Yazdanpanah, M.V.S. Lima, P.S.R. Diniz, On the robustness of set-membership adaptive filtering algorithms. EURASIP J. Adv. Signal Process. 72, 1–12 (2017)

    Google Scholar 

  22. J.A. Apolinário, M.L.R. de Campos, P.S.R. Diniz, The binormalized data-reusing LMS algorithm. IEEE Trans. Signal Process. 48, 3235–3242 (2000)

    Google Scholar 

  23. L. Guo, Y.-F. Huang, Set-membership adaptive filtering with parameter-dependent error bound tuning, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, PA, May 2005 (2005), pp. IV-369–IV-372

    Google Scholar 

  24. J.G. Proakis, Digital Communications, 4th edn. (McGraw Hill, New York, 2001)

    MATH  Google Scholar 

  25. R.C. de Lamare, P.S.R. Diniz, Set-membership adaptive algorithms based on time-varying error bounds for DS-CDMA systems, in Proceedings of the IEEE International Symposium on Circuits and Systems, Island of Kos, Greece, May 2006 (2006), pp. 3466–3469

    Google Scholar 

  26. R.C. de Lamare, P.S.R. Diniz, Blind constrained set-membership algorithms with time-varying bounds for CDMA interference suppression, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Toulouse, France, May 2006 (2006), pp. IV-617–IV-620

    Google Scholar 

  27. R.C. de Lamare, P.S.R. Diniz, Set-membership adaptive algorithms based on time-varying error bounds for CDMA to interference suppression. IEEE Trans. Veh. Technol. 58, 644–654 (2009)

    Article  Google Scholar 

  28. S.C. Douğançay, Partial-Update Adaptive Signal Processing: Design, Analysis and Implementation (Academic, Oxford, 2008)

    Google Scholar 

  29. S.C. Douğançay, O. Tanrikulu, Selective-partial-update NLMS and affine projection algorithms for acoustic echo cancellation, in Proceedings of the IEEE International Conference on Acoustic Speech and Signal Processing, Istanbul, Turkey, June 2000 (2000), pp. 448–451

    Google Scholar 

  30. E. Hänsler, G. Schmidt, Acoustics Echo and Noise Control: A Practical Approach (Wiley, Hoboken, 2004)

    Book  Google Scholar 

  31. J. Benesty, T. Gänsler, D.R. Morgan, M.M. Sondhi, S.L. Gay, Advances in Network and Acoustics Echo Cancellation (Springer, Berlin, 2001)

    Book  Google Scholar 

  32. International Telecommunication Union, ITU-T G.168 standard for digital network echo cancellers, March 2009

    Google Scholar 

  33. M.C. Jeruchim, P. Balaban, K. San Shanmugan, Simulation of Communication Systems: Modeling Methodology and Techniques, 2nd edn. (Kluwer Academic, Norwell, 2000)

    Google Scholar 

  34. European Telecommunications Standards Institute, UMTS, Technical report TR 101 112 V3.2.0, 1998–04

    Google Scholar 

  35. J.I. Smith, Computer generated multipath fading simulation for mobile radio. IEEE Trans. Veh. Technol. 24, 39–40 (1975)

    Article  Google Scholar 

  36. T.S. Rappaport, Wireless Communications: Principles and Practice, 2nd edn. (Prentice Hall, Englewood Cliffs, 2002)

    MATH  Google Scholar 

  37. P.S.R. Diniz, E.A.B. da Silva, S.L. Netto, Digital Signal Processing: System Analysis and Design, 2nd edn. (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  38. E.H. Dinan, B. Jabbari, Spreading codes for direct sequence CDMA and wideband CDMA cellular networks. IEEE Commun. Mag. 36, 48–58 (1998)

    Article  Google Scholar 

  39. S. Werner, J.A. Apolinário Jr., P.S.R. Diniz, Set-membership proportionate affine projection algorithms. EURASIP J. Audio Speech Music Process. 2007, 1–10 (2007). Article ID 34242

    Article  Google Scholar 

  40. S. Werner, P.S.R. Diniz, J.E.W. Moreira, Set-membership affine projection algorithm with variable data-reuse factor, in Proceedings of the IEEE International Symposium on Circuits and Systems, Island of Kos, Greece, May 2006 (2006), pp. 261–264

    Google Scholar 

  41. S. Werner, J.A. Apolinário Jr., M.L.R. de Campos, P.S.R. Diniz, Low-complexity constrained affine-projection algorithms. IEEE Trans. Signal Process. 53, 4545–4555 (2005)

    Article  MathSciNet  Google Scholar 

  42. S. Chouvardas, K. Slavakis, S. Theodoridis, Adaptive robust distributed learning in diffusion sensor networks. IEEE Trans. Signal Process. 59, 4692–4706 (2011)

    Article  MathSciNet  Google Scholar 

  43. T. Wang, R.C. de Lamare, P.D. Michell, Low-complexity set-membership channel estimate for cooperative wireless sensor networks. IEEE Trans. Veh. Technol. 60, 2594–2606 (2011)

    Article  Google Scholar 

  44. M.V.S. Lima, T.N. Ferreira, W.A. Martins, P.S.R. Diniz, Sparsity-aware data-selective adaptive filters. IEEE Trans. Signal Process. 62, 4557–4572 (2014)

    Article  MathSciNet  Google Scholar 

  45. P.S.R. Diniz, On data-selective adaptive filtering. IEEE Trans. Signal Process. 66, 4239–4252 (2018)

    Article  MathSciNet  Google Scholar 

  46. M.O.K. Mendonça, J.O. Ferreira, C.G. Tsinos, P.S.R. Diniz, T.N. Ferreira, On fast converging data-selective adaptive filtering. Algorithms 2019 12, 1–15 (MDPI AG, 2019)

    Google Scholar 

  47. D. Berberidis, V. Kekatos, G.B. Giannakis, Online censorship for large-scale regressions with applications to streaming big data. IEEE Trans. Signal Process. 64, 3854–3867 (2016)

    Article  MathSciNet  Google Scholar 

  48. P.S.R. Diniz, R.P. Braga, S. Werner, Set-membership affine projection algorithm for echo cancellation, in Proceedings of the IEEE International Symposium on Circuits and Systems, Island of Kos, Greece, May 2006 (2006), pp. 405–408

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo S. R. Diniz .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diniz, P.S.R. (2020). Set-Membership Adaptive Filtering. In: Adaptive Filtering. Springer, Cham. https://doi.org/10.1007/978-3-030-29057-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29057-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29056-6

  • Online ISBN: 978-3-030-29057-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics