Skip to main content

Fundamentals of Adaptive Filtering

  • Chapter
  • First Online:

Abstract

This chapter includes a brief review of deterministic and random signal representations. Due to the extent of those subjects, our review is limited to the concepts that are directly relevant to adaptive filtering. The properties of the correlation matrix of the input signal vector are investigated in some detail, since they play a key role in the statistical analysis of the adaptive filtering algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The index k can also denote space in some applications.

  2. 2.

    An alternative and more accurate notation for the convolution summation would be \((x *h)(k)\) instead of \(x(k) *h(k)\), since in the latter the index k appears twice, whereas the resulting convolution is simply a function of k. We will keep the latter notation since it is more widely used.

  3. 3.

    Or equivalently, such that \(\mathrm{X}(k,\varrho ) \le y\).

  4. 4.

    The average signal power at a given sufficiently small frequency range, \(\Delta \omega \), around a center frequency \(\omega _{0}\) is approximately given by .

  5. 5.

    We can also change the order in which the \({\mathbf {{q}}}_{i}\)’s compose matrix \({\mathbf {{Q}}}\), but this fact is not relevant to the present discussion.

  6. 6.

    This property is valid for any square matrix, but for more general matrices the proof differs from the one presented here.

  7. 7.

    For non-Hermitian matrices, the maximum of the Rayleigh’s quotient may occur in a vector \({\mathbf {{w}}}\) not corresponding to an eigenvector, yet the quotient is utilized to quantify the size of a matrix [22].

  8. 8.

    Some books define \({\mathbf {{g}}}_{\mathbf {{w}}}\) as \(\left[ \frac{\partial \xi }{\partial {\mathbf {{w}}}}\right] ^{T}\), here we follow the notation more widely used in the subject matter.

  9. 9.

    It is valid for any \({\mathbf {{w}}}\).

  10. 10.

    The number of constraints should be less than \(N+1\).

  11. 11.

    Noise added to the reference signal originated from environment and/or thermal noise.

  12. 12.

    Assuming x(k) and v(k) are jointly WSS.

References

  1. D.G. Luenberger, Introduction to Linear and Nonlinear Programming, 2nd edn. (Addison Wesley, Reading, 1984)

    Google Scholar 

  2. R. Fletcher, Practical Methods of Optimization, 2nd edn. (Wiley, New York, 1990)

    MATH  Google Scholar 

  3. A. Antoniou, W.-S. Lu, Practical Optimization: Algorithms and Engineering Applications (Springer, New York, 2007)

    MATH  Google Scholar 

  4. B. Widrow, M.E. Hoff, Adaptive switching circuits. WESCOM Conv. Rec. 4, 96–140 (1960)

    Google Scholar 

  5. B. Widrow, J.M. McCool, M.G. Larimore, C.R. Johnson Jr., Stationary and nonstationary learning characteristics of the LMS adaptive filters. Proc. IEEE 64, 1151–1162 (1976)

    MathSciNet  Google Scholar 

  6. A. Papoulis, Signal Analysis (McGraw Hill, New York, 1977)

    MATH  Google Scholar 

  7. A.V. Oppenheim, A.S. Willsky, S.H. Nawab, Signals and Systems, 2nd edn. (Prentice Hall, Englewood Cliffs, 1997)

    Google Scholar 

  8. P.S.R. Diniz, E.A.B. da Silva, S.L. Netto, Digital Signal Processing: System Analysis and Design, 2nd edn. (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  9. A. Antoniou, Digital Signal Processing: Signals, Systems, and Filters (McGraw Hill, New York, 2005)

    Google Scholar 

  10. L.B. Jackson, Digital Filters and Signal Processing, 3rd edn. (Kluwer Academic, Norwell, 1996)

    Google Scholar 

  11. R.A. Roberts, C.T. Mullis, Digital Signal Processing (Addison-Wesley, Reading, 1987)

    Google Scholar 

  12. J.G. Proakis, D.G. Manolakis, Digital Signal Processing, 4th edn. (Prentice Hall, Englewood Cliffs, 2007)

    Google Scholar 

  13. T. Bose, Digital Signal and Image Processing (Wiley, New York, 2004)

    Google Scholar 

  14. W.A. Gardner, Introduction to Random Processes, 2nd edn. (McGraw Hill, New York, 1990)

    Google Scholar 

  15. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd edn. (McGraw Hill, New York, 1991)

    MATH  Google Scholar 

  16. P.Z. Peebles Jr., Probability, Random Variables, and Random Signal Principles, 3rd edn. (McGraw Hill, New York, 1993)

    Google Scholar 

  17. A. Papoulis, Predictable processes and Wold’s decomposition: A review. IEEE Trans. Acoust. Speech Signal Process. ASSP-33, 933–938 (1985)

    MathSciNet  MATH  Google Scholar 

  18. S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice Hall, Englewood Cliffs, 1993)

    MATH  Google Scholar 

  19. S.L. Marple Jr., Digital Spectral Analysis (Prentice Hall, Englewood Cliffs, 1987)

    Google Scholar 

  20. C.R. Johnson Jr., Lectures on Adaptive Parameter Estimation (Prentice Hall, Englewood Cliffs, 1988)

    MATH  Google Scholar 

  21. T. Söderström, P. Stoica, System Identification (Prentice Hall International, Hemel Hempstead, Hertfordshire, 1989)

    Google Scholar 

  22. G. Strang, Linear Algebra and Its Applications, 2nd edn. (Academic, New York, 1980)

    MATH  Google Scholar 

  23. R.A. Horn, C.R. Johnson, Matrix Analysis, 2nd edn. (Cambridge University Press, Cambridge, 2013)

    MATH  Google Scholar 

  24. G.H. Golub, C.F. Van Loan, Matrix Computations, 4th edn. (John Hopkins University Press, Baltimore, 2013)

    MATH  Google Scholar 

  25. D.H. Johnson, D.E. Dudgeon, Array Signal Processing (Prentice Hall, Englewood Cliffs, 1993)

    MATH  Google Scholar 

  26. H.L. Van trees, Optimum Array Processing: Part IV of Detection, Estimation and Modulation Theory (Wiley, New York, 2002)

    Google Scholar 

  27. L.J. Griffiths, C.W. Jim, An alternative approach to linearly constrained adaptive beamforming. IEEE Trans. Antenn. Propag. AP-30, 27–34 (1982)

    Google Scholar 

  28. M.L.R. de Campos, S. Werner, J.A. Apolinário Jr., Constrained adaptation algorithms employing Householder transformation. IEEE Trans. Signal Process. 50, 2187–2195 (2002)

    MathSciNet  MATH  Google Scholar 

  29. J.G. Proakis, Digital Communication, 4th edn. (McGraw Hill, New York, 2001)

    Google Scholar 

  30. B. Widrow, S.D. Stearns, Adaptive Signal Processing (Prentice Hall, Englewood Cliffs, 1985)

    MATH  Google Scholar 

  31. L.C. Wood, S. Treitel, Seismic signal processing. Proc. IEEE 63, 649–661 (1975)

    Google Scholar 

  32. D.G. Messerschmitt, Echo cancellation in speech and data transmission. IEEE J Sel. Areas Comm. SAC-2, 283–296 (1984)

    Google Scholar 

  33. M.L. Honig, Echo cancellation of voiceband data signals using recursive least squares and stochastic gradient algorithms. IEEE Trans. Comm. COM-33, 65–73 (1985)

    Google Scholar 

  34. S. Subramanian, D.J. Shpak, P.S.R. Diniz, A. Antoniou, The performance of adaptive filtering algorithms in a simulated HDSL environment, in Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering, Toronto, Canada, Sept 1992, pp. TA 2.19.1–TA 2.19.5

    Google Scholar 

  35. D.W. Lin, Minimum mean-squared error echo cancellation and equalization for digital subscriber line transmission: part I - theory and computation. IEEE Trans. Comm. 38, 31–38 (1990)

    MathSciNet  Google Scholar 

  36. D.W. Lin, Minimum mean-squared error echo cancellation and equalization for digital subscriber line transmission: part II - a simulation study. IEEE Trans. Comm. 38, 39–45 (1990)

    Google Scholar 

  37. B. Widrow, J.R. Grover Jr., J.M. McCool, J. Kaunitz, C.S. Williams, R.H. Hearns, J.R. Zeidler, E. Dong Jr., R.C. Goodlin, Adaptive noise cancelling: principles and applications. Proc. IEEE 63, 1692–1716 (1975)

    Google Scholar 

  38. B.D. Van Veen, K.M. Buckley, Beamforming: a versatile approach to spatial filtering. IEEE Acoust. Speech Signal Process. Mag. 37, 4–24 (1988)

    Google Scholar 

  39. L.R. Rabiner, R.W. Schafer, Digital Processing of Speech Signals (Prentice Hall, Englewood Cliffs, 1978)

    Google Scholar 

  40. S.U. Qureshi, Adaptive equalization. Proc. IEEE 73, 1349–1387 (1985)

    Google Scholar 

  41. M. Abdulrahman, D.D. Falconer, Cyclostationary crosstalk suppression by decision feedback equalization on digital subscriber line. IEEE J. Sel. Areas Comm. 10, 640–649 (1992)

    Google Scholar 

  42. H. Samueli, B. Daneshrad, R.B. Joshi, B.C. Wong, H.T. Nicholas III, A 64-tap CMOS echo canceller/decision feedback equalizer for 2B1Q HDSL transceiver. IEEE J. Sel. Areas Comm. 9, 839–847 (1991)

    Google Scholar 

  43. J.-J. Werner, The HDSL environment. IEEE J. Sel. Areas Comm. 9, 785–800 (1991)

    Google Scholar 

  44. J.W. Leichleider, High bit rate digital subscriber lines: a review of HDSL progress. IEEE J. Sel. Areas Comm. 9, 769–784 (1991)

    Google Scholar 

  45. M.L. Honig, D.G. Messerschmitt, Adaptive Filters: Structures, Algorithms, and Applications (Kluwer Academic, Boston, 1984)

    MATH  Google Scholar 

  46. S.T. Alexander, Adaptive Signal Processing (Springer, New York, 1986)

    MATH  Google Scholar 

  47. J.R. Treichler, C.R. Johnson Jr., M.G. Larimore, Theory and Design of Adaptive Filters (Wiley, New York, 1987)

    MATH  Google Scholar 

  48. M. Bellanger, Adaptive Digital Filters and Signal Analysis, 2nd edn. (Marcel Dekker Inc, New York, 2001)

    Google Scholar 

  49. P. Strobach, Linear Prediction Theory (Springer, New York, 1990)

    MATH  Google Scholar 

  50. B. Farhang-Boroujeny, Adaptive Filters: Theory and Applications (Wiley, New York, 1998)

    MATH  Google Scholar 

  51. S. Haykin, Adaptive Filter Theory, 4th edn. (Prentice Hall, Englewood Cliffs, 2002)

    MATH  Google Scholar 

  52. A.H. Sayed, Fundamentals of Adaptive Filtering (Wiley, Hoboken, 2003)

    Google Scholar 

  53. A.H. Sayed, Adaptive Filters (Wiley, Hoboken, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo S. R. Diniz .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diniz, P.S.R. (2020). Fundamentals of Adaptive Filtering. In: Adaptive Filtering. Springer, Cham. https://doi.org/10.1007/978-3-030-29057-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29057-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29056-6

  • Online ISBN: 978-3-030-29057-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics