Skip to main content

A Combinatorial Computational Approach for Drug Discovery Against AIDS: Machine Learning and Proteochemometrics

  • Chapter
  • First Online:
  • 1014 Accesses

Abstract

Computational methods have been widely used in drug discovery including identification of novel targets, studying drug target interactions, and in virtual screening of compounds against known targets. Machine learning techniques have been used in predictions of novel targets and drugs with greater accuracy compared to other methods. Machine learning algorithms have also been widely used in predicting the progression of disease, resistance of a drug to a virus, treatment efficacy prediction, and also in predicting the effectiveness of combinational therapy with respect to HIV-1. In this article, we have focused on some of the machine learning techniques in the context of viral disease. In brief, machine learning methods have great potential in drug discovery, drug repurposing, and in precision medicine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349(6245):255–60. https://doi.org/10.1126/science.aaa8415.

    Article  CAS  PubMed  Google Scholar 

  2. Chui M, Henke N, Miremadi M. Most of AI’s business uses will be in two areas. Harv Bus Rev. 2018. https://hbr.org/2018/07/most-of-ais-business-uses-will-be-in-two-areas.

  3. Singh Y. Machine learning to improve the effectiveness of ANRS in predicting HIV drug resistance. Healthc Inform Res. 2017;23(4):271–6. https://doi.org/10.4258/hir.2017.23.4.271.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Evans D, Pottier C, Fletcher R, Hensley S, Tapley I, Milne A, Barbetti M. A comprehensive archaeological map of the world’s largest preindustrial settlement complex at Angkor, Cambodia. Proc Natl Acad Sci. 2007;104(36):14277–82. https://doi.org/10.1073/pnas.0702525104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Montgomery EB Jr, Huang H, Assadi A. Unsupervised clustering algorithm for N-dimensional data. J Neurosci Methods. 2005;144(1):19–24. https://doi.org/10.1016/j.jneumeth.2004.10.015.

    Article  PubMed  Google Scholar 

  6. Garla V, Taylor C, Brandt C. Semi-supervised clinical text classification with Laplacian SVMs: an application to cancer case management. J Biomed Inform. 2013;46(5):869–75. https://doi.org/10.1016/j.jbi.2013.06.014.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vapnik VN. The nature of statistical learning theory. New York: Springer; 2000. p. 314.

    Book  Google Scholar 

  8. Vapnik VN. Statistical learning theory. New York: John Wiley & Sons, Inc; 1998.

    Google Scholar 

  9. Camps-Valls G, Bruzzone L. Kernel-based methods for hyperspectral image classification. IEEE Trans Geosci Remote Sens. 2005;43(6):1351–62. https://doi.org/10.1109/TGRS.2005.846154.

    Article  Google Scholar 

  10. Jacob L, Hoffmann B, Stoven V, Vert JP. Virtual screening of GPCRs: an in silico chemogenomics approach. BMC Bioinformatics. 2008;9(1):363. https://doi.org/10.1186/1471-2105-9-363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Singh Y, Mars M. Support vector machines to forecast changes in CD4 count of HIV-1 positive patients. Sci Res Essays. 2010;5(17):2384–90.

    Google Scholar 

  12. Shafer RW. Rationale and uses of a public HIV drug-resistance database. J Infect Dis. 2006;194(Supplement_1):S51–8. https://doi.org/10.1086/505356.

    Article  PubMed  Google Scholar 

  13. Raileanu LE, Stoffel K. Theoretical comparison between the gini index and information gain criteria. Ann Math Artif Intell. 2004;41(1):77–93.

    Article  Google Scholar 

  14. Breiman L. Classification and regression trees. Taylor & Francis Group, LLC 1984, Boca raton, FL, pp368

    Google Scholar 

  15. Li Y, Rapkin B. Classification and regression tree uncovered hierarchy of psychosocial determinants underlying quality-of-life response shift in HIV/AIDS. J Clin Epidemiol. 2009;62(11):1138–47. https://doi.org/10.1016/j.jclinepi.2009.03.021.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Muñoz-Moreno JA, Pérez-Álvarez N, Muñoz-Murillo A, Prats A, Garolera M, Jurado MÀ, Fumaz CR, Negredo E, Ferrer MJ, Clotet B. Classification models for neurocognitive impairment in HIV infection based on demographic and clinical variables. PLoS One. 2014;9(9):e107625. https://doi.org/10.1371/journal.pone.0107625.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schouten J, Cinque P, Gisslen M, Reiss P, Portegies P. HIV-1 infection and cognitive impairment in the cART era: a review. AIDS. 2011;25(5):561–75. https://doi.org/10.1097/QAD.0b013e3283437f9a.

    Article  PubMed  Google Scholar 

  18. Ho TK. The random subspace method for constructing decision forests. ITPAM. 1998;20:832–44.

    Google Scholar 

  19. Breiman L. Random forests. Mach Learn. 2001;45:5–32.

    Article  Google Scholar 

  20. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci. 2003;43(6):1947–58. https://doi.org/10.1021/ci034160g.

    Article  CAS  PubMed  Google Scholar 

  21. Shen C, Yu X, Harrison RW, Weber IT. Automated prediction of HIV drug resistance from genotype data. BMC Bioinformatics. 2016;17(8):278. https://doi.org/10.1186/s12859-016-1114-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang D, Larder B, Revell A, Montaner J, Harrigan R, De Wolf F, Lange J, Wegner S, Ruiz L, Pérez-Elías MJ, Emery S. A comparison of three computational modelling methods for the prediction of virological response to combination HIV therapy. Artif Intell Med. 2009;47(1):63–74. https://doi.org/10.1016/j.artmed.2009.05.002.

    Article  PubMed  Google Scholar 

  23. Revell AD, Wang D, Wood R, Morrow C, Tempelman H, Hamers RL, Alvarez-Uria G, Streinu-Cercel A, Ene L, Wensing AM, DeWolf F. Computational models can predict response to HIV therapy without a genotype and may reduce treatment failure in different resource-limited settings. J Antimicrob Chemother. 2013;68(6):1406–14. https://doi.org/10.1093/jac/dkt041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Larder BA, DeGruttola V, Hammer S, Harrigan R, Wegner S, Winslow D, Zazzi M. The international HIV resistance response database initiative: a new global collaborative approach to relating viral genotype and treatment to clinical outcome. In: Antiviral therapy, vol. 7. London: International Medical Press Ltd; 2002. p. S111.

    Google Scholar 

  25. Tarasova O, Biziukova N, Filimonov D, Poroikov V. A computational approach for the prediction of HIV resistance based on amino acid and nucleotide descriptors. Molecules. 2018;23(11):2751. https://doi.org/10.3390/molecules23112751.

    Article  CAS  PubMed Central  Google Scholar 

  26. Beerenwinkel N, Schmidt B, Walter H, Kaiser R, Lengauer T, Hoffmann D, Korn K, Selbig J. Diversity and complexity of HIV-1 drug resistance: a bioinformatics approach to predicting phenotype from genotype. Proc Natl Acad Sci. 2002;99(12):8271–6. https://doi.org/10.1073/pnas.112177799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deeks SG, Hellmann NS, Grant RM, Parkin NT, Petropoulos CJ, Becker M, Symonds W, Chesney M, Volberding PA. Novel four-drug salvage treatment regimens after failure of a human immunodeficiency virus type 1 protease inhibitor-containing regimen: antiviral activity and correlation of baseline phenotypic drug susceptibility with virologic outcome. J Infect Dis. 1999;179(6):1375–81. https://doi.org/10.1086/314775.

    Article  CAS  PubMed  Google Scholar 

  28. Harrigan PR, Hertogs K, Verbiest W, Pauwels R, Larder B, Kemp S, Bloor S, Yip B, Hogg R, Alexander C, Montaner JS. Baseline HIV drug resistance profile predicts response to ritonavir-saquinavir protease inhibitor therapy in a community setting. AIDS. 1999;13(14):1863–71.

    Article  CAS  PubMed  Google Scholar 

  29. Walter H, Schmidt B, Rascu A, Helm M, Moschik B, Paatz C, Kurowski M, Korn K, Uberla K, Harrer T. Phenotypic HIV-1 resistance correlates with treatment outcome of nelfinavir salvage therapy. Antivir Ther. 2000;5(4):249–56.

    CAS  PubMed  Google Scholar 

  30. Weinberger KQ, Saul LK. Distance metric learning for large margin nearest neighbor classification. J Mach Learn Res. 2009;10(Feb):207–44.

    Google Scholar 

  31. Drăghici S, Potter RB. Predicting HIV drug resistance with neural networks. Bioinformatics. 2003;19(1):98–107. https://doi.org/10.1093/bioinformatics/19.1.98.

    Article  PubMed  Google Scholar 

  32. Hirsch MS, Günthard HF, Schapiro JM, Vézinet FB, Clotet B, Hammer SM, Johnson VA, Kuritzkes DR, Mellors JW, Pillay D, Yeni PG. Antiretroviral drug resistance testing in adult HIV-1 infection: 2008 recommendations of an International AIDS Society-USA panel. Clin Infect Dis. 2008;47(2):266–85. https://doi.org/10.1086/589297.

    Article  PubMed  Google Scholar 

  33. Department of Health and Human Services Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Washington, DC: Department of Health and Human Services; 2006.

    Google Scholar 

  34. Vandamme AM, Sönnerborg A, Ait-Khaled M, Albert J, Asjo B, Bacheler L, Banhegyi D, Boucher C, Brun-Vezinet F, Camacho R, Clevenbergh P. Updated European recommendations for the clinical use of HIV drug resistance testing. Antivir Ther. 2004;9(6):829–48.

    CAS  PubMed  Google Scholar 

  35. Schmidt B, Walter H, Moschik B, Paatz C, Van Vaerenbergh K, Vandamme AM, Schmitt M, Harrer T, Überla K, Korn K. Simple algorithm derived from a geno−/phenotypic database to predict HIV-1 protease inhibitor resistance. AIDS. 2000;14(12):1731–8.

    Article  CAS  PubMed  Google Scholar 

  36. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2017;46(D1):D1074–82. https://doi.org/10.1093/nar/gkx1037.

    Article  CAS  PubMed Central  Google Scholar 

  37. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res. 2000;28(1):235–42. https://doi.org/10.1093/nar/28.1.235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen X, Ji ZL, Chen YZ. TTD: therapeutic target database. Nucleic Acids Res. 2002;30(1):412–5. https://doi.org/10.1093/nar/30.1.412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hansch C. Quantitative approach to biochemical structure-activity relationships. Acc Chem Res. 1969;2(8):232–9. https://doi.org/10.1021/ar50020a002.

    Article  CAS  Google Scholar 

  40. Ballester PJ, Mitchell JB. A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking. Bioinformatics. 2010;26(9):1169–75. https://doi.org/10.1093/bioinformatics/btq112.

    Article  CAS  PubMed  Google Scholar 

  41. Shaikh N, Sharma M, Garg P. An improved approach for predicting drug–target interaction: proteochemometrics to molecular docking. Mol BioSyst. 2016;12(3):1006–14. https://doi.org/10.1039/C5MB00650C.

    Article  CAS  PubMed  Google Scholar 

  42. Kohavi R, John GH. Wrappers for feature subset selection. Artif Intell. 1997;97(1–2):273–324. https://doi.org/10.1016/S0004-3702(97)00043-X.

    Article  Google Scholar 

  43. Lapins M, Wikberg JE. Proteochemometric modeling of drug resistance over the mutational space for multiple HIV protease variants and multiple protease inhibitors. J Chem Inf Model. 2009;49(5):1202–10. https://doi.org/10.1021/ci800453k.

    Article  CAS  PubMed  Google Scholar 

  44. Huang Q, Jin H, Liu Q, Wu Q, Kang H, Cao Z, Zhu R. Proteochemometric modeling of the bioactivity spectra of HIV-1 protease inhibitors by introducing protein-ligand interaction fingerprint. PLoS One. 2012;7(7):e41698. https://doi.org/10.1371/journal.pone.0041698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lapins M, Eklund M, Spjuth O, Prusis P, Wikberg JE. Proteochemometric modeling of HIV protease susceptibility. BMC Bioinformatics. 2008;9(1):181. https://doi.org/10.1186/1471-2105-9-181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Junaid M, Lapins M, Eklund M, Spjuth O, Wikberg JE. Proteochemometric modeling of the susceptibility of mutated variants of the HIV-1 virus to reverse transcriptase inhibitors. PLoS One. 2010;5(12):e14353. https://doi.org/10.1371/journal.pone.0014353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van Westen GJ, Hendriks A, Wegner JK, IJzerman AP, van Vlijmen HW, Bender A. Significantly improved HIV inhibitor efficacy prediction employing proteochemometric models generated from antivirogram data. PLoS Comput Biol. 2013;9(2):e1002899. https://doi.org/10.1371/journal.pcbi.1002899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The corresponding author acknowledges the grant (No. VGST/GRD-533/2016-17/241) received from Karnataka Science and Technology Promotion Society (KSTePS), India, for supporting the ‘Centre for Interactive Biomolecular 3D-literacy (C-in-3D)’ under the VGST scheme – Centres of Innovative Science, Engineering and Education (CISEE) for the year 2016-17.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

D’souza, S., V., P.K., Balaji, S. (2019). A Combinatorial Computational Approach for Drug Discovery Against AIDS: Machine Learning and Proteochemometrics. In: Shapshak, P., et al. Global Virology III: Virology in the 21st Century. Springer, Cham. https://doi.org/10.1007/978-3-030-29022-1_11

Download citation

Publish with us

Policies and ethics