Skip to main content

Swarm Intelligence in Cell Entry Exclusion Phenomena in Viruses and Plasmids: How to Exploit Intelligent Gene Vector Self-Scattering in Therapeutic Gene Delivery

  • Chapter
  • First Online:

Abstract

Many naturally occurring viral and bacterial gene transfer systems present ‘superinfection interference’ phenomena, where expression of additional viral genomes or bacterial plasmids in cells previously infected with a homologous virus or plasmid is limited or altogether absent. The lack of expression of superinfecting homologous genetic material could be due to either denial of its cell entry where a failed cell entry attempt is followed by the return of the superinfecting genomes back into the infecting pool, or, alternatively, to a block of transfer, expression or replication of the superinfecting genomes, where these genomes are being deactivated and eventually destroyed. The distinction between these two scenarios is important because the return of the superinfecting genomes back into the pool of circulating infectious genomes allows productive examination of such superinfection interference phenomena within the abstract framework of swarm intelligence, where viral or plasmid genomes are being viewed as individual ‘agents’. Signaling between mobile agents is a crucial element of swarm intelligence. Thus, in superinfection interference, the denial of cell entry to the superinfecting viral/plasmid genomes (‘circulating’ agents) by the cell-resident viral/plasmid genomes (‘settler’ agents) can be regarded as a signaling event. In virology and plasmid biology, occurrences of denial of cell entry to superinfecting genomes can be met in various settings; the most commonly used terms for these phenomena are ‘cell entry exclusion’ and ‘cell surface exclusion’.

So, being concerned with the intelligent swarm-level behavior, this chapter is focused only on the ‘strict non-admittance’ subset of the cell entry exclusion phenomena where the superinfecting agents are recycled back into the ‘circulating’ infectious pool and are not retained and destroyed by the recipient cells. Considered within the framework of swarm intelligence, these genome agents will exhibit intelligent swarm-based self-scattering behavior. In general, such signaling from the ‘settler’ agents to the homologous ‘circulating’ agents can be accomplished through the knockout of a viral/plasmid receptor or another positive gene transfer factor (passive denial of entry) or through the expression of a gene transfer rejection factor (active denial of entry). This chapter illustrates swarm-based intelligent self-scattering behavior with appropriate examples from known superinfection interference phenomena and conjectures how such behavior of viral/plasmid genomes can be exploited for gene vector scattering needs in therapeutic gene delivery with viral and non-viral gene vectors.

It is anticipated that that intelligent self-scattering of gene delivery agents in gene vector swarms can be employed in artificial gene transfer systems delivering therapeutic genes to human cells in order to avoid undesired multicopy gene conveyance and, thus, to achieve uniform transgene copy-number distribution and transgene expression at an unvaried curatively-effective level in target cells. Thus, it is expected that the exploitation of the intelligent self-scattering capability of swarms of therapeutic gene vectors will find a wide range of applications in gene therapy, particularly where, on the one hand, therapeutic gene delivery is required to be highly concentrated and efficient and, on the other hand, uniform transgene dosage is critical for the optimal curative effect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Reinhart TA, Ghosh AK, Hoover EA, Mullins JI. Distinct superinfection interference properties yet similar receptor utilization by cytopathic and noncytopathic feline leukemia viruses. J Virol. 1993;67(9):5153–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Abedon ST. Bacteriophage secondary infection. Virol Sin. 2015;30(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  3. Dunny GM, Zimmerman DL, Tortorello ML. Induction of surface exclusion (entry exclusion) by Streptococcus faecalis sex pheromones: use of monoclonal antibodies to identify an inducible surface antigen involved in the exclusion process. Proc Natl Acad Sci U S A. 1985;82(24):8582–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Novick RP. Plasmid incompatibility. Microbiol Rev. 1987;51(4):381–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu MJ, Henning U. Superinfection exclusion by T-even-type coliphages. Trends Microbiol. 1994;2(4):137–9.

    Article  CAS  PubMed  Google Scholar 

  6. Nethe M, Berkhout B, van der Kuyl AC. Retroviral superinfection resistance. Retrovirology. 2005;2:52.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lee YM, Tscherne DM, Yun SI, Frolov I, Rice CM. Dual mechanisms of pestiviral superinfection exclusion at entry and RNA replication. J Virol. 2005;79(6):3231–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arutyunov D, Frost LS. F conjugation: back to the beginning. Plasmid. 2013;70(1):18–32. Epub 2013/05/02.

    Article  CAS  PubMed  Google Scholar 

  9. Krause J, Ruxton GD, Krause S. Swarm intelligence in animals and humans. Trends Ecol Evol. 2010;25(1):28–34.

    Article  PubMed  Google Scholar 

  10. Toutouh J, Alba E. A swarm algorithm for collaborative traffic in vehicular networks. Veh Commun. 2018;12:127–37.

    Google Scholar 

  11. Nag S, Summerer L. Behaviour based, autonomous and distributed scatter manoeuvres for satellite swarms. Acta Astronaut. 2013;82(1):95–109.

    Article  Google Scholar 

  12. Alfeo AL, Cimino MGCA, De Francesco N, Lega M, Vaglini G. Design and simulation of the emergent behavior of small drones swarming for distributed target localization. J Comput Sci. 2018;29:19–33.

    Article  Google Scholar 

  13. Weng LG, Liu QS, Xia M, Song YD. Immune network-based swarm intelligence and its application to unmanned aerial vehicle (UAV) swarm coordination. Neurocomputing. 2014;125:134–41.

    Article  Google Scholar 

  14. Baluska F, Lev-Yadun S, Mancuso S. Swarm intelligence in plant roots. Trends Ecol Evol. 2010;25(12):682–3.

    Article  PubMed  Google Scholar 

  15. Inácio FR, Macharet DG, Chaimowicz L. PSO-based strategy for the segregation of heterogeneous robotic swarms. J Comput Sci. 2019;31:86–94.

    Article  Google Scholar 

  16. Tolmachov O, Harbottle R, Bigger B, Coutelle C. Minimized, CpG-depleted, and methylated DNA vectors: towards perfection in nonviral gene therapy. In: Schleef M, editor. DNA pharmaceuticals: formulation and delivery in gene therapy, DNA vaccination and immunotherapy. Weinheim: Wiley-VCH; 2006. p. 43–54.

    Chapter  Google Scholar 

  17. Weber W, Fussenegger M. Pharmacologic transgene control systems for gene therapy. J Gene Med. 2006;8(5):535–56.

    Article  CAS  PubMed  Google Scholar 

  18. Tolmachov OE, Subkhankulova T, Tolmachova T. Silencing of transgene expression: a gene therapy perspective. In: Martin-Molina F, editor. Gene therapy – tools and potential applications. Rijeka, Croatia: InTech; 2013. p. 49–68.

    Google Scholar 

  19. Tolmachov OE. Self-focusing therapeutic gene delivery with intelligent gene vector swarms: intra-swarm signalling through receptor transgene expression in targeted cells. Artif Intell Med. 2015;63(1):1–6. Epub 2014/12/31.

    Article  PubMed  Google Scholar 

  20. Buchholz CJ, Friedel T, Büning H. Surface-engineered viral vectors for selective and cell type-specific gene delivery. Trends Biotechnol. 2015;33(12):777–90.

    Article  CAS  PubMed  Google Scholar 

  21. Borroni E, Miola M, Ferraris S, Ricci G, Žužek Rožman K, Kostevšek N, et al. Tumor targeting by lentiviral vectors combined with magnetic nanoparticles in mice. Acta Biomater. 2017;59:303–16.

    Article  CAS  PubMed  Google Scholar 

  22. Gowing G, Svendsen S, Svendsen CN. Chapter 4 – Ex vivo gene therapy for the treatment of neurological disorders. In: Dunnett SB, Björklund A, editors. Progress in brain research. Cambridge San-Diego Oxford London: Elsevier; 2017. p. 99–132.

    Chapter  Google Scholar 

  23. Tolmachov OE. Split vector systems for ultra-targeted gene delivery: a contrivance to achieve ethical assurance of somatic gene therapy in vivo. Med Hypotheses. 2014;83(2):211–6.. Epub 2014/05/24

    Article  CAS  PubMed  Google Scholar 

  24. Dorigo M, Bonabeau E, Theraulaz G. Ant algorithms and stigmergy. Futur Gener Comput Syst. 2000;16(8):851–71.

    Article  Google Scholar 

  25. Wang H, Klamo E, Kuhmann SE, Kozak SL, Kavanaugh MP, Kabat D. Modulation of ecotropic murine retroviruses by N-linked glycosylation of the cell surface receptor/amino acid transporter. J Virol. 1996;70(10):6884–91. Epub 1996/10/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang IC, Li W, Sui J, Marasco W, Choe H, Farzan M. Influenza A virus neuraminidase limits viral superinfection. J Virol. 2008;82(10):4834–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goto H, Ohta K, Matsumoto Y, Yumine N, Nishio M. Evidence that receptor destruction by the Sendai virus hemagglutinin-neuraminidase protein is responsible for homologous interference. J Virol. 2016;90(17):7640–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Laliberte JP, Moss B. A novel mode of poxvirus superinfection exclusion that prevents fusion of the lipid bilayers of viral and cellular membranes. J Virol. 2014;88(17):9751–68.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yamada Y, Yamada M, Nakazawa A. A ColE1-encoded gene directs entry exclusion of the plasmid. J Bacteriol. 1995;177(21):6064–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmickl T, Thenius R, Crailsheim K. Swarm-intelligent foraging in honeybees: benefits and costs of task-partitioning and environmental fluctuations. Neural Comput Applic. 2012;21(2):251–68.

    Article  Google Scholar 

  31. Clewell DB. Bacterial sex pheromone-induced plasmid transfer. Cell. 1993;73(1):9–12.

    Article  CAS  PubMed  Google Scholar 

  32. Grancic P, Stepanek F. Active targeting in a random porous medium by chemical swarm robots with secondary chemical signaling. Phys Rev E Stat Nonlinear Soft Matter Phys. 2011;84(2–1):021925. Epub 2011/09/21.

    Article  Google Scholar 

  33. Shklarsh A, Finkelshtein A, Ariel G, Kalisman O, Ingham C, Ben-Jacob E. Collective navigation of cargo-carrying swarms. Interface Focus. 2012;2(6):786–98.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Misra S. Human gene therapy: a brief overview of the genetic revolution. J Assoc Physicians India. 2013;61(2):127–33.. Epub 2014/01/30

    PubMed  Google Scholar 

  35. Tolmachov OE. Transgenic DNA modules with pre-programmed self-destruction: universal molecular devices to escape ‘genetic litter’ in gene and cell therapy. Med Hypotheses. 2015;85(5):686–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ellis EL, Delbrück M. The growth of bacteriophage. J Gen Physiol. 1939;22(3):365–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Castellani S, Di Gioia S, Trotta T, Maffione AB, Conese M. Impact of lentiviral vector-mediated transduction on the tightness of a polarized model of airway epithelium and effect of cationic polymer polyethylenimine. J Biomed Biotechnol. 2010;2010:11.

    Article  Google Scholar 

  38. Zielske SP, Lingas KT, Li Y, Gerson SL. Limited lentiviral transgene expression with increasing copy number in an MGMT selection model: lack of copy number selection by drug treatment. Mol Ther. 2004;9(6):923–31.

    Article  CAS  PubMed  Google Scholar 

  39. Kong Q, Wu M, Huan Y, Zhang L, Liu H, Bou G, et al. Transgene expression is associated with copy number and cytomegalovirus promoter methylation in transgenic pigs. PLoS One. 2009;4(8):e6679.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg E. Tolmachov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tolmachov, O.E. (2019). Swarm Intelligence in Cell Entry Exclusion Phenomena in Viruses and Plasmids: How to Exploit Intelligent Gene Vector Self-Scattering in Therapeutic Gene Delivery. In: Shapshak, P., et al. Global Virology III: Virology in the 21st Century. Springer, Cham. https://doi.org/10.1007/978-3-030-29022-1_10

Download citation

Publish with us

Policies and ethics