Skip to main content

Symmetry Avoidance in MACE-Style Finite Model Finding

  • Conference paper
  • First Online:
Frontiers of Combining Systems (FroCoS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11715))

Included in the following conference series:

Abstract

This work considers the MACE-style approach to finite model finding for (multi-sorted) first-order logic. This existing approach iteratively assumes increasing domain sizes and encodes the corresponding model existence problem as a SAT problem. The original MACE tool and its successors have considered techniques for avoiding introducing symmetries in the resulting SAT problem, but this has never been the focus of the previous work and has not received concentrated attention. In this work we formalise the symmetry avoiding problem, characterise the notion of a sound symmetry breaking heuristic, propose a number of such heuristics and evaluate them experimentally with an implementation in the Vampire theorem prover. Our results demonstrate that these new heuristics improve performance on a number of benchmarks taken from SMT-LIB and TPTP. Finally, we show that direct symmetry breaking techniques could be used to improve finite model finding, but that their cost means that symmetry avoidance is still the preferable approach.

This work was supported by EPSRC Grant EP/P03408X/1. Martin Suda was supported by the ERC Consolidator grant AI4REASON 649043.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An alternative to encoding the problem into SAT is to target the EUF logic and use an SMT solver instead. This approach has been explored by Vakili and Day [21].

  2. 2.

    This means that for every function symbol f of arity a we have \(M(f)(\mathsf {d}_1,\ldots ,\mathsf {d}_a)=\mathsf {d}\) if and only if \(M_\sigma (f)(\sigma (\mathsf {d}_1),\ldots ,\sigma (\mathsf {d}_a))=\sigma (\mathsf {d})\) and for every predicate symbol p of arity b we have \(M(p)(\mathsf {d}_1,\ldots ,\mathsf {d}_b)\) if and only if \(M_\sigma (p)(\sigma (\mathsf {d}_1),\ldots ,\sigma (\mathsf {d}_b))\).

  3. 3.

    Recall that a \( DC \)-interpretation can be identified by the set of principal atoms true in it.

  4. 4.

    For \(j=2\) the clauses contain \(p_1 = d_1\) which is always true given (1). For \(j > i\) the literal \(p_i \ne d_j\) and thus the corresponding constraint (2) follow from (1) and the functionality axioms.

  5. 5.

    We necessarily have \(k \le m\) and \(k < m\) implies \(M(p_i) = M(p_j)\) for some \(i \ne j\).

  6. 6.

    Speculating what this value could be if we proceed anyway is an interesting direction for further research not covered in this paper.

  7. 7.

    In particular, \(p_1\) must be a constant.

  8. 8.

    https://vprover.github.io/.

  9. 9.

    https://derivation.org/frocos2019.

  10. 10.

    Some combinations are not sensible. For example, randomising the ordering of principal terms means that any ordering of function symbols will be ignored.

References

  1. Aloul, F.A., Markov, I.L., Sakallah, K.A.: Shatter: efficient symmetry-breaking for Boolean satisfiability. In: Proceedings of the 40th Design Automation Conference, DAC 2003, Anaheim, CA, USA, 2–6 June 2003, pp. 836–839 (2003)

    Google Scholar 

  2. Audemard, G., Henocque, L.: The eXtended least number heuristic. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 427–442. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45744-5_35

    Chapter  Google Scholar 

  3. Claessen, K., Lillieström, A.: Automated inference of finite unsatisfiability. J. Autom. Reason. 47(2), 111–132 (2011)

    Article  MathSciNet  Google Scholar 

  4. Claessen, K., Sörensson, N.: New techniques that improve MACE-style model finding. In: CADE-19 Workshop: Model Computation - Principles, Algorithms and Applications (2003)

    Google Scholar 

  5. Darga, P.T., Katebi, H., Liffiton, M., Markov, I.L., Sakallah, K.: Saucy. http://vlsicad.eecs.umich.edu/BK/SAUCY

  6. Darga, P T., Liffiton, M.H., Sakallah, K.A., Markov, I.L.: Exploiting structure in symmetry detection for CNF. In: Proceedings of the 41st Design Automation Conference, DAC 2004, San Diego, CA, USA, 7–11 June 2004, pp. 530–534. ACM (2004)

    Google Scholar 

  7. Devriendt, J., Bogaerts, B., Bruynooghe, M., Denecker, M.: Improved static symmetry breaking for SAT. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 104–122. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_8

    Chapter  MATH  Google Scholar 

  8. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_37

    Chapter  Google Scholar 

  9. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer set solving in practice. In: Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, San Rafael (2012)

    Google Scholar 

  10. Gent, I.P., Petrie, K.E., Puget, J.: Symmetry in constraint programming. In: Handbook of Constraint Programming, pp. 329–376 (2006)

    Chapter  Google Scholar 

  11. SAT Competitions: SAT Competition 2009: Benchmark Submission Guidelines. https://www.satcompetition.org/2009/format-benchmarks2009.html

  12. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_1

    Chapter  Google Scholar 

  13. Mccune, W.: A Davis-Putnam program and its application to finite first-order model search: quasigroup existence problems. Technical report, Argonne National Laboratory (1994)

    Google Scholar 

  14. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Handbook of Automated Reasoning (in 2 volumes), pp. 335–367 (2001)

    Chapter  Google Scholar 

  15. Reger, G., Suda, M., Voronkov, A.: The challenges of evaluating a new feature in vampire. In: Proceedings of the 1st and 2nd Vampire Workshops. EPiC Series in Computing, vol. 38, pp. 70–74. EasyChair (2016)

    Google Scholar 

  16. Reger, G., Suda, M., Voronkov, A.: Finding finite models in multi-sorted first-order logic. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 323–341. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_20

    Chapter  Google Scholar 

  17. Reger, G., Suda, M., Voronkov, A.: New techniques in clausal form generation. In: GCAI 2016, 2nd Global Conference on Artificial Intelligence. EPiC Series in Computing, vol. 41, pp. 11–23. EasyChair (2016)

    Google Scholar 

  18. Sakallah, K.A.: Symmetry and satisfiability. In: Handbook of Satisfiability, pp. 289–338 (2009)

    Google Scholar 

  19. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec, a cross community logic solving service (2012). https://www.starexec.org

  20. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom. Reason. 43(4), 337–362 (2009)

    Article  MathSciNet  Google Scholar 

  21. Vakili, A., Day, N.A.: Finite model finding using the logic of equality with uninterpreted functions. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 677–693. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6_41

    Chapter  Google Scholar 

  22. Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: IJCAI 1995, pp. 298–303 (1995)

    Google Scholar 

  23. Zhang, J., Zhang, H.: System description generating models by SEM. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 308–312. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61511-3_96

    Chapter  Google Scholar 

Download references

Acknowledgement

We thank the anonymous reviewers for critically reading the paper and suggesting substantial improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giles Reger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reger, G., Riener, M., Suda, M. (2019). Symmetry Avoidance in MACE-Style Finite Model Finding. In: Herzig, A., Popescu, A. (eds) Frontiers of Combining Systems. FroCoS 2019. Lecture Notes in Computer Science(), vol 11715. Springer, Cham. https://doi.org/10.1007/978-3-030-29007-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29007-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29006-1

  • Online ISBN: 978-3-030-29007-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics