Skip to main content

Ulam Stability of Zero Point Equations

  • Chapter
  • First Online:
Book cover Ulam Type Stability

Abstract

In this paper, we will study different kind of Ulam stability concepts for the zero point equation. Our approach is based on weakly Picard operator theory related to fixed point and coincidence point equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas, S., Benchohra, M., Petruşel, A.: Ulam stability for Hilfer type fractional differential inclusions via the weakly Picard operator theory. Fract. Calc. Applied Anal. 20, 384–398 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aczél, J.: Lectures on Functional Equations and Their Applications. Academic, New York (1966)

    MATH  Google Scholar 

  3. András, Sz., Kolumban, J.J.: On the Ulam-Hyers stability of first order differential systems with nonlocal initial conditions. Nonlinear Anal. 82, 1–11 (2013)

    Google Scholar 

  4. András, Sz., Mészáros, A.R.: Ulam-Hyers stability of dynamic equation on time scales via Picard operators. Appl. Math. Comput. 219, 4853–4864 (2013)

    Google Scholar 

  5. Aoki, T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2, 64–66 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  6. Avramescu, C.: A generalization of Mirands’s theorem. In: Seminar on Fixed Point Theory Cluj-Napoca, vol. 3, pp. 121–128 (2002)

    MATH  Google Scholar 

  7. Azagra, D., Gómez, J., Jaramillo J.A.: Rolle’s theorem and negligibility of points in infinite dimensional Banach spaces. J. Math. Anal. Appl. 213, 487–495 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baker, J.A.: The stability of certain functional equations. Proc. Am. Math. Soc. 112, 729–732 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ban, A.I., Gal, S.G.: Defects of Properties in Mathematics. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  10. Belitskii, G., Tkachenko, V.: One-Dimensional Functional Equations. Birkhäuser, Basel (2003)

    Google Scholar 

  11. Berinde, V.: Iterative Approximations of Fixed Points. Springer, Berlin (2007)

    MATH  Google Scholar 

  12. Berinde, V., Petruşel, A., Rus, I.A, Şerban, M.A.: The retraction-displacement condition in the theory of fixed point equation with a convergent iterative algorithm. In: Rassias, Th.M., Gupta, V. (eds.) Mathematical Analysis, Approximation Theory and Their Applications, pp. 75–106. Springer Berlin (2016)

    Chapter  MATH  Google Scholar 

  13. Bota-Boriceanu, M., Petruşel, A.: Ulam-Hyers stability for operatorial equations. Analele Univ. Al.I. Cuza Iaşi 57, 65–74 (2011)

    MATH  Google Scholar 

  14. Brown R.F., Hales, A.W.: Primitive roots of unity in H-manifolds. Am. J. Math. 92, 612–618 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brown R.F., Jiang, B., Schirmer, H.: Roots of iterates of maps. Topol. Appl. 66, 129–157 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brzdek, J., Popa, D., Xu, B.: Note on nonstability of the linear recurrence. Abh. Math. Sem. Univ. Hamburg 76, 183–189 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brzdek, J., Popa, D., Xu, B.: The Hyers-Ulam stability of nonlinear recurrences. J. Math. Anal. Appl. 335, 443–449 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Brzdek, J., Karapınar, E., Petruşel, A.: A fixed point theorem and the Ulam stability in generalized dq-metric spaces. J. Math. Anal. Appl. 467, 501–520 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Buică, A.: Coincidence Principles ands Applications. Presa Universitară Clujeană, Cluj-Napoca (2001, in Romanian)

    Google Scholar 

  20. Buică, A., Rus, I.A., Şerban, M.A.: Zero point principle of ball-near identity operators and applications to implicit operator problem. Fixed Point Theory. 21(1), (2020), to appear

    Google Scholar 

  21. Cădariu, L., Radu, V.: A general fixed point method for the stability of Jensen functional equation. Bul. Şt. Univ. Politehnica din Timişoara 51, 63–72 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Cădariu, L., Radu, V.: The alternative of fixed point and stability results for functional equations. Int. J. Appl. Math. Stat. 7, 40–58 (2007)

    MathSciNet  Google Scholar 

  23. Chidume, C.E., Măruşter, Şt.: Iterative methods for the computation of fixed points of demicontractive mappings. J. Comput. Appl. Math. 234, 861–882 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Deimling, K.: Nonlinear Funct. Anal. Springer, Berlin (1995)

    Google Scholar 

  25. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. Springer Mathematics Monographs. Springer, Dordrecht (2009)

    Google Scholar 

  26. Egri, E.: Ulam stabilities of a first order iterative functional-differential equation. Fixed Point Theory 12, 321–328 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Fierro, R., Martinez, C., Morales, C.H.: The aftermath of the intermediate value theorem. Fixed Point Theory Appl. 2004(3), 243–250 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Găvruţă, P., Găvruţă, L.: A new method for the generalized Hyers-Ulam-Rassias stability. Int. J. Nonlinear Anal. Appl. 1, 11–18 (2010)

    MATH  Google Scholar 

  29. Ghermănescu, M.: Functional Equations. Ed. Acad. R.P.R., Bucureşti (1960, in Romanian)

    Google Scholar 

  30. Gilbert, W.J.: Generalizations of Newton’s method. Fractals 9, 251–262 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  32. Gruber, P.M.: Stability of isometries. Trans. Am. Math. Soc. 245, 263–277 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hyers, D.H.: The stability of homomorphism and related topics. In: Rassias Th.M. (ed.) Global Analysis – Analysis on Manifolds, pp. 140–153. Teubner, Leipzig (1983)

    Google Scholar 

  34. Hyers, D.H., Ulam, S.M.: On approximate isometries. Bull. Am. Math. Soc. 51, 288–292 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hyers, D.H., Isac, G., Rassias, Th.M.: Stability of Functional Equations in Several Variables. Birkhäuser, Basel (1998)

    Google Scholar 

  36. Jung, S.-M.: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Florida (2001)

    MATH  Google Scholar 

  37. Jung, S.-M.: A fixed point to the stability of isometries. J. Math. Anal. Appl. 329, 879–890 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Jung, S.-M.: Hyers-Ulam stability of linear partial differential equations of first order. Appl. Math. Lett. 22, 70–74 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jung, S.-M., Lee, K.-S.: Hyers-Ulam stability of first order linear partial differential equations with constant coefficients. Math. Ineq. Appl. 10, 261–266 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Jung, S.-M., Rassias, Th. M.: Generalized Hyers-Ulam stability of Riccati differential equation. Math. Ineq. Appl. 11, 777–782 (2008)

    MathSciNet  MATH  Google Scholar 

  41. Jung, S.-M., Rezaei, H.: A fixed point approach to the stability of linear differential equations. Bull. Malays. Math. Sci. Soc. 38, 855–865 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kantorovich, L.V., Akilov, G.P.: Analyse fonctionelle. MIR, Moscou (1981)

    Google Scholar 

  43. Kirk, W., Shahzad, N.: Fixed Point Theory in Distance Spaces. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  44. Krantz, S.G., Parks, H.R.: The Implicit Function Theorem: History, Theory, and Applications. Birkhäuser, Basel (2013)

    Google Scholar 

  45. Kulpa, W.: The Poincaré-Miranda theorem. Am. Math. Mon. 104, 545–550 (1997)

    MATH  Google Scholar 

  46. La Salle, J.P.: The Stability of Dynamical Systems. SIAM, Philadelphia (1976)

    Book  Google Scholar 

  47. Lungu, N., Rus, I.A.: Ulam stability of nonlinear hyperbolic partial differential equations. Carpath. J. Math. 24, 403–408 (2008)

    MATH  Google Scholar 

  48. Mawhin, J.: Variations on Poincaré-Miranda’s theorem. Adv. Nonlinear Stud. 13, 209–217 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Miranda, C.: Un’osservazione su un teorema di Brouwer. Boll. Un. Mat. Ital. 3, 5–7 (1940)

    MathSciNet  MATH  Google Scholar 

  50. Morales, C.H.: A Bolzano’s theorem in the new millenium. Nonlinear Anal. 51, 679–691 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  51. Nirenberg, L.: Variational and topological methods in nonlinear problems. Bull. Am. Math. Soc. 4, 267–302 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ortega, J.M.: Numerical Analysis. Academic, New York (1972)

    MATH  Google Scholar 

  53. Ortega, J.M., Rheionboldt, W.C.: On a class of approximate iterative processes. Arch. Ration. Mech. Anal. 23, 352–365 (1967)

    Article  MathSciNet  Google Scholar 

  54. Otrocol, D., Ilea V.: Ulam stability for a delay differential equation. Cen. Eur. J. Math. 11, 1296–1303 (2013)

    MathSciNet  MATH  Google Scholar 

  55. Pavel, N.H.: Zeros of Bouligand-Nagumo fields. Libertas Math. 9, 13–36 (1989)

    MathSciNet  MATH  Google Scholar 

  56. Petruşel, A., Petruşel, G.: A study of a general system of operator equations in b-metric spaces via the vector approach in fixed point theory. J. Fixed Point Theory Appl. 19, 1793–1814 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  57. Petruşel, A., Rus, I.A.: Graphic contraction principle and applications. Mathematical Analysis and Apoplications (Th. M. Rassias, P. Pardalos - Eds.), Springer Berlin (2019), to appear

    Google Scholar 

  58. Petruşel, A., Rus, I.A., Şerban, M.A.: Fixed point for operators on generalized metric spaces. CUBO A Math. J. 10, 45–66 (2008)

    MathSciNet  MATH  Google Scholar 

  59. Petruşel, A., Petruşel, G., Yao, J.-C.: Fixed point and coincidence point theorems in b-metric spaces with applications. Appl. Anal. Discret. Math. 11, 199–215 (2017)

    Article  MathSciNet  Google Scholar 

  60. Petruşel, A., Petruşel, G., Yao, J.-C.: Contributions to the coupled coincidence point problem in b-metric spaces with applications. Filomat 31, 3173–3180 (2017)

    Article  MathSciNet  Google Scholar 

  61. Poincaré, H., Sur certaines solutions paiticulieres du probleme des trois corps, C.R. Acad. Sci. Paris 91, 251–252 (1883)

    Google Scholar 

  62. Popa, D.: Hyers-Ulam stability of the linear recurrence with constant coefficients. Adv. Differ. Equ. 2, 101–107 (2005)

    MathSciNet  MATH  Google Scholar 

  63. Popa, D., Raşa, I.: Hyers-Ulam stability of the Laplace operator. Fixed Point Theory 19, 379–382 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  64. Radu, V.: The fixed point alternative and the stability of functional equations. Fixed Point Theory 4, 91–96 (2003)

    MathSciNet  MATH  Google Scholar 

  65. Rassias, Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  66. Rassias, Th.M., Brzdek J. (eds.): Functional Equations in Mathematical Analysis. Springer, Berlin (2012)

    Google Scholar 

  67. Reem, D.: The open mapping theorem and the fundamental theorem of algebra. Fixed Point Theory 9, 249–266 (2008)

    MathSciNet  MATH  Google Scholar 

  68. Reich, S., Zaslawski A.J.: A stability result in fixed point theory. Fixed Point Theory 6, 113–118 (2005)

    MathSciNet  Google Scholar 

  69. Rus, I.A.: An abstract point of view in the nonlinear difference equations. In: Itinerant Seminar on Functional Equations, Approximation and Convexity, pp. 272–276. Ed Carpatica, Cluj-Napoca (1999)

    Google Scholar 

  70. Rus, I.A.: Fixed Point Structure Theory. Cluj University Press, Cluj-Napoca (2006)

    MATH  Google Scholar 

  71. Rus, I.A.: Gronwall lemma approach to the Hyers-Ulam-Rassias stability of an integral equation. In: Pardalos, P., Rassias, Th.M., Khan, A.A. (eds.) Nonlinear Analysis and Variational Problems, pp. 147–152. Springer, New York (2009)

    Google Scholar 

  72. Rus, I.A.: Remarks on Ulam stability of the operatorial equations. Fixed Point Theory 10, 305–320 (2009)

    MathSciNet  MATH  Google Scholar 

  73. Rus, I.A.: Ulam stability of ordinary differential equations. Studia Univ. Babeş-Bolyai Math. 54, 125–133 (2009)

    MathSciNet  MATH  Google Scholar 

  74. Rus, I.A.: Ulam stability of ordinary differential equations in a Banach space. Carpath. J. Math. 26, 103–107 (2010)

    MATH  Google Scholar 

  75. Rus, I.A.: Ulam stability of operatorial equations. In: Rassias, Th.M„ Brzdek, J. (eds.) Functional Equations in Mathematical Analysis, pp. 287–305. Springer, New York (2012)

    Google Scholar 

  76. Rus, I.A.: Results and problems in Ulam stability of operatorial equations and inclusions. In: Rassias, Th.M. (ed.) Handbook of Functional Equations: Stability Theory, pp. 323–352. Springer, New York (2014)

    Chapter  Google Scholar 

  77. Rus, I.A.: Relevant classes of weakly Picard operators. An. Univ. Vest Timişoara, Mat.-Inf. 54, 3–19 (2016)

    Google Scholar 

  78. Rus, I.A., Aldea, F.: Fixed points, zeros and surjectivity. Studia Univ. Babeş-Bolyai Math. 45, 109–116 (2000)

    MathSciNet  MATH  Google Scholar 

  79. Rus, I.A., Petruşel, A., Petruşel, G.: Fixed Point Theory. Cluj University Press, Cluj-Napoca (2008)

    MATH  Google Scholar 

  80. Sburlan, S.: Monotone semilinear equations in Hilbert spaces and applications. Creat. Math. Inf. 17, 32–37 (2008)

    MathSciNet  MATH  Google Scholar 

  81. Seda, V.: Surjectivity of an operator. Czechoslov. Math. J. 40, 46–63 (1990)

    MathSciNet  MATH  Google Scholar 

  82. Smale, S.: The fundamental theorem of algebra and complexity theory. Bull. Am. Math. Soc. 4, 1–36 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  83. Száz, A.: Generalizations of an asymptotic stability theorem of Bahyrycz, Páles and Piszczek on Cauchy differences to generalized cocycles. Studia Univ. Babeş-Bolyai Math. 63, 109–124 (2018)

    Article  MATH  Google Scholar 

  84. Tarsia, A.: Differential equations and implicit functions: a generalization of the near operators theorem. Topol. Math. Nonlinear Anal. 11, 115–133 (1998)

    MathSciNet  MATH  Google Scholar 

  85. Trif, T.: On the stability of a general gamma-type functional equation. Publ. Math. 60, 47–61 (2002)

    MathSciNet  MATH  Google Scholar 

  86. Trif, T.: Hyers-Ulam-Rassias stability of a linear functional equation with constant coefficients. Nonlinear Funct. Anal. Appl. 11, 881–889 (2006)

    MathSciNet  MATH  Google Scholar 

  87. Vrahatis, M.N.: A short proof and a generalization of Miranda’s existence theorem. Proc. Am. Math. Soc. 107, 701–703 (1989)

    MathSciNet  MATH  Google Scholar 

  88. Wang, J., Lv, L., Zhou, Y.: New concepts and results in stability of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 2530–2538 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  89. Wang, J., Zhou, Y., Fec̆kan, M.: Nonlinear impulsive problems for fractional differential equations and Ulam stability. Comput. Math. Appl. 64, 3389–3405 (2012)

    Google Scholar 

  90. Xu, M.: Hyers-Ulam-Rassias stability of a system of first order linear recurences. Bull. Korean Math. Soc. 44, 841–849 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  91. Zhou, D.Y.: Basic Theory of Fractional Differential Equations. World Scientific Publishing, Singapore (2014)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Petruşel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petruşel, A., Rus, I.A. (2019). Ulam Stability of Zero Point Equations. In: Brzdęk, J., Popa, D., Rassias, T. (eds) Ulam Type Stability . Springer, Cham. https://doi.org/10.1007/978-3-030-28972-0_16

Download citation

Publish with us

Policies and ethics