Skip to main content

Inequalities for Symmetrized or Anti-Symmetrized Inner Products of Complex-Valued Functions Defined on an Interval

  • Chapter
  • First Online:
Frontiers in Functional Equations and Analytic Inequalities
  • 374 Accesses

Abstract

For a function \(f:\left [ a,b\right ] \rightarrow \mathbb {C}\) we consider the symmetrical transform of f on the interval \(\left [ a,b\right ],\) denoted by f̆, and defined by

$$\displaystyle \breve {f}\left ( t\right ) :=\frac {1}{2}\left [ f\left ( t\right ) +f\left ( a+b-t\right ) \right ],t\in \left [a,b\right ] $$

and the anti-symmetrical transform of f on the interval \(\left [ a,b\right ] \) denoted by \(\tilde {f}\) and defined by

$$\displaystyle \tilde {f}:=\frac {1}{2}\left [ f\left ( t\right ) -f\left ( a+b-t\right ) \right ] ,t\in \left [ a,b\right ]. $$

We consider in this paper the inner products

$$\displaystyle \left \langle f,g\right \rangle _{\smile }:=\int _{a}^{b}\breve {f}\left ( t\right ) \overline {\breve {g}\left ( t\right ) }dt\text{ and }\left \langle f,g\right \rangle _{\sim }:=\int _{a}^{b}\tilde {f}\left ( t\right ) \overline { \tilde {g}\left ( t\right ) }dt, $$

the corresponding norms and establish their fundamental properties. Some Schwarz and Grüss’ type inequalities are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.M. Acu, Improvement of Grüss and Ostrowski type inequalities. Filomat 29(9), 2027–2035 (2015)

    Article  MathSciNet  Google Scholar 

  2. A.M. Acu, H. Gonska, I. Raşa, Grüss-type and Ostrowski-type inequalities in approximation theory. Ukr. Math. J. 63(6), 843–864 (2011)

    Article  Google Scholar 

  3. A.M. Acu, F. Sofonea, C.V. Muraru, Grüss and Ostrowski type inequalities and their applications. Sci. Stud. Res. Ser. Math. Inform. 23(1), 5–14 (2013)

    MathSciNet  MATH  Google Scholar 

  4. M.W. Alomari, Some Grüss type inequalities for Riemann-Stieltjes integral and applications. Acta Math. Univ. Comenian. (N.S.) 81(2), 211–220 (2012)

    Google Scholar 

  5. M.W. Alomari, New Grüss type inequalities for double integrals. Appl. Math. Comput. 228 , 102–107 (2014)

    MathSciNet  MATH  Google Scholar 

  6. M.W. Alomari, New inequalities of Grüss-Lupaş type and applications for selfadjoint operators. Armen. J. Math. 8(1), 25–37 (2016)

    MathSciNet  MATH  Google Scholar 

  7. G.A. Anastassiou, Basic and s-convexity Ostrowski and Grüss type inequalities involving several functions. Commun. Appl. Anal. 17(2), 189–212 (2013)

    MathSciNet  MATH  Google Scholar 

  8. G.A. Anastassiou, General Grüss and Ostrowski type inequalities involving S-convexity. Bull. Allahabad Math. Soc. 28(1), 101–129.880 (2013)

    MathSciNet  MATH  Google Scholar 

  9. G.A. Anastassiou, Fractional Ostrowski and Grüss type inequalities involving several functions. PanAmer. Math. J. 24(3), 1–14 (2014)

    MathSciNet  MATH  Google Scholar 

  10. G.A. Anastassiou, Further interpretation of some fractional Ostrowski and Grüss type inequalities. J. Appl. Funct. Anal. 9(3–4), 392–403 (2014)

    MathSciNet  MATH  Google Scholar 

  11. P. Cerone, S.S. Dragomir, Some new Ostrowski-type bounds for the Čebyšev functional and applications. J. Math. Inequal. 8(1), 159–170 (2014)

    Article  MathSciNet  Google Scholar 

  12. X.-K. Chai, Y. Miao, Note on the Grüss inequality. Gen. Math. 19(3), 93–99 (2011)

    MathSciNet  MATH  Google Scholar 

  13. S.S. Dragomir, A generalization of Grüss’s inequality in inner product spaces and applications. J. Math. Anal. Appl. 237(1), 74–82 (1999)

    Article  MathSciNet  Google Scholar 

  14. S.S. Dragomir, New Grüss’ type inequalities for functions of bounded variation and applications. Appl. Math. Lett. 25(10), 1475–1479 (2012)

    Article  MathSciNet  Google Scholar 

  15. S.S. Dragomir, Bounds for convex functions of Čebyšev functional via Sonin’s identity with applications. Commun. Math. 22(2), 107–132 (2014)

    MathSciNet  MATH  Google Scholar 

  16. S.S. Dragomir, Some Grüss-type results via Pompeiu’s-like inequalities. Arab. J. Math. 4(3), 159–170 (2015)

    Article  MathSciNet  Google Scholar 

  17. S.S. Dragomir, Bounding the Čebyšev functional for a differentiable function whose derivative is h or λ-convex in absolute value and applications. Matematiche (Catania) 71(1), 173–202 (2016)

    Google Scholar 

  18. S.S. Dragomir, Bounding the Čebyšev functional for a function that is convex in absolute value and applications. Facta Univ. Ser. Math. Inform. 31(1), 33–54 (2016)

    MathSciNet  MATH  Google Scholar 

  19. S.S. Dragomir, M.S. Moslehian, Y.J. Cho, Some reverses of the Cauchy-Schwarz inequality for complex functions of self-adjoint operators in Hilbert spaces. Math. Inequal. Appl. 17(4), 1365–1373 (2014). Preprint RGMIA Res. Rep. Coll. 14, Article 84. (2011). http://rgmia.org/papers/v14/v14a84.pdf

  20. Q. Feng, F. Meng, Some generalized Ostrowski-Grüss type integral inequalities. Comput. Math. Appl. 63(3), 652–659 (2012)

    Article  MathSciNet  Google Scholar 

  21. B. Gavrea, Improvement of some inequalities of Chebysev-Grüss type. Comput. Math. Appl. 64(6), 2003–2010 (2012)

    Article  MathSciNet  Google Scholar 

  22. A.G. Ghazanfari, A Grüss type inequality for vector-valued functions in Hilbert C -modules. J. Inequal. Appl. 2014(16), 10 (2014)

    Google Scholar 

  23. S. Hussain, A. Qayyum, A generalized Ostrowski-Grüss type inequality for bounded differentiable mappings and its applications. J. Inequal. Appl. 2013(1), 7 (2013)

    Google Scholar 

  24. N. Minculete and L. Ciurdariu, A generalized form of Grüss type inequality and other integral inequalities. J. Inequal. Appl. 2014(119), 18 (2014)

    Google Scholar 

  25. A. Qayyum, S. Hussain, A new generalized Ostrowski Grüss type inequality and applications. Appl. Math. Lett. 25(11), 1875–1880 (2012)

    Article  MathSciNet  Google Scholar 

  26. M.-D. Rusu, On Grüss-type inequalities for positive linear operators. Stud. Univ. Babeş-Bolyai Math. 56(2), 551–565 (2011)

    MathSciNet  Google Scholar 

  27. M.Z. Sarikaya, H. Budak, An inequality of Grüss like via variant of Pompeiu’s mean value theorem. Konuralp J. Math. 3(1), 29–35 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvestru Sever Dragomir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dragomir, S.S. (2019). Inequalities for Symmetrized or Anti-Symmetrized Inner Products of Complex-Valued Functions Defined on an Interval. In: Anastassiou, G., Rassias, J. (eds) Frontiers in Functional Equations and Analytic Inequalities. Springer, Cham. https://doi.org/10.1007/978-3-030-28950-8_26

Download citation

Publish with us

Policies and ethics