Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 919 Accesses

Abstract

Secondary batteries based on earth-abundant sodium metal anodes are desirable for both grid-level, stationary storage and for portable electrical energy storage. Room-temperature sodium metal batteries are impractical today because morphological instability during battery recharge leads to dendritic electrodeposition. Chemical instability of liquid electrolytes in contact with metallic sodium also leads to premature cell failure by depleting the electrolyte and electrode via parasitic reactions. Here we show by means of joint density-functional theoretical analysis that the surface diffusion barrier for ion transport across a metal/liquid interface is a sensitive function of the chemistry of solid electrolyte interphase. In particular, we find that a sodium bromide interphase presents an exceptionally low energy barrier to ion transport, comparable to that of metallic magnesium, which can be recharged in liquid electrolytes without forming dendrites. We evaluate this prediction by means of electrochemical measurements and direct visualization studies. These experiments reveal an approximately threefold reduction in activation energy for ion transport across the sodium bromide interphase. By means of direct visualization of sodium electrodeposition at planar interfaces and by electrochemical analysis, we further show that the reduction in transport barrier at a sodium-bromine-liquid electrolyte interphase yields large improvements in stability of sodium deposition in liquid electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armand, M., Tarascon, J.-M.: Building better batteries. Nature. 451, 652–657 (2008)

    Article  CAS  Google Scholar 

  2. Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature. 414, 359–367 (2001)

    Article  CAS  Google Scholar 

  3. Hueso, K.B., Armand, M., Rojo, T.: High temperature sodium batteries: status, challenges and future trends. Energy Environ. Sci. 6, 734–749 (2013)

    Article  CAS  Google Scholar 

  4. Zheng, G., et al.: Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014)

    Article  CAS  Google Scholar 

  5. Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004)

    Article  CAS  Google Scholar 

  6. Wei, S., et al.: A stable room-temperature sodium–sulfur battery. Nat. Commun. 7, 11722 (2016)

    Article  CAS  Google Scholar 

  7. Wei, S., et al.: Highly stable sodium batteries enabled by functional ionic polymer membranes. Adv. Mater. 29, 1605512 (2017)

    Article  Google Scholar 

  8. Cohn, A.P., Muralidharan, N., Carter, R., Share, K., Pint, C.L.: Anode-free sodium battery through in situ plating of sodium metal. Nano Lett. 17, 1296–1301 (2017)

    Article  CAS  Google Scholar 

  9. Choudhury, S., et al.: Designer interphases for lithium-oxygen electrochemical cell. Sci. Adv. 3, e1602809 (2017)

    Article  Google Scholar 

  10. Yadegari, H., Sun, Q., Sun, X.: Sodium-oxygen batteries: a comparative review from chemical and electrochemical fundamentals to future perspective. Adv. Mater. 28, 7065–7093 (2016)

    Article  CAS  Google Scholar 

  11. Tu, Z., Nath, P., Lu, Y., Tikekar, M.D., Archer, L.A.: Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Acc. Chem. Res. 48, 2947–2956 (2015)

    Article  CAS  Google Scholar 

  12. Tikekar, M.D., Choudhury, S., Tu, Z., Archer, L.A.: Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy. 1, 16114 (2016)

    Article  CAS  Google Scholar 

  13. Choudhury, S., Archer, L.A.: Lithium fluoride additives for stable cycling of lithium batteries at high current densities. Adv. Electron. Mater. 2, 1500246 (2015)

    Article  Google Scholar 

  14. Choudhury, S., Mangal, R., Agrawal, A., Archer, L.A.: A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 6, 10101 (2015)

    Article  CAS  Google Scholar 

  15. Agrawal, A., Choudhury, S., Archer, L.A.: A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte. RSC Adv. 5, 20800–20809 (2015)

    Article  CAS  Google Scholar 

  16. Wong, D.H.C., et al.: Nonflammable perfluoropolyether-based electrolytes for lithium batteries. Proc. Natl. Acad. Sci. U. S. A. 111, 3327–3331 (2014)

    Article  CAS  Google Scholar 

  17. Wu, H., et al.: Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 4, 1943 (2013)

    Article  Google Scholar 

  18. Seh, Z.W., Sun, J., Sun, Y., Cui, Y.: A highly reversible room-temperature sodium metal anode. ACS Cent. Sci. 1, 449–455 (2015)

    Article  CAS  Google Scholar 

  19. Pan, H., Hu, Y.-S., Chen, L.: Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338 (2013)

    Article  CAS  Google Scholar 

  20. Tu, Z., et al.: Nanoporous hybrid electrolytes for high energy batteries based on reactive metal anodes. Adv. Energy Mater. 7, 1602367 (2017)

    Article  Google Scholar 

  21. Hallinan, D.T., Mullin, S.A., Stone, G.M., Balsara, N.P.: Lithium metal stability in batteries with block copolymer electrolytes. J. Electrochem. Soc. 160, A464–A470 (2013)

    Article  CAS  Google Scholar 

  22. Lu, Y., Tu, Z., Archer, L.A.: Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014)

    Article  CAS  Google Scholar 

  23. Lu, Y., Das, S.K., Moganty, S.S., Archer, L.A.: Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries. Adv. Mater. 24, 4430–4435 (2012)

    Article  CAS  Google Scholar 

  24. Schaefer, J.L., Yanga, D.A., Archer, L.A.: High lithium transference number electrolytes via creation of 3-dimensional, charged, nanoporous networks from dense functionalized nanoparticle composites. Chem. Mater. 25, 834–839 (2013)

    Article  CAS  Google Scholar 

  25. Bouchet, R., et al.: efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013)

    Article  CAS  Google Scholar 

  26. Feng, S., et al.: Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions. Electrochim. Acta. 93, 254–263 (2013)

    Article  CAS  Google Scholar 

  27. Bertasi, F., et al.: Single-ion-conducting nanocomposite polymer electrolytes for lithium batteries based on lithiated-fluorinated-iron oxide and poly(ethylene glycol) 400. Electrochim. Acta. 175, 113–123 (2015)

    Article  CAS  Google Scholar 

  28. Guo, J., Wen, Z., Wu, M., Jin, J., Liu, Y.: Vinylene carbonate–LiNO3: a hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. Electrochem. Commun. 51, 59–63 (2015)

    Article  CAS  Google Scholar 

  29. Li, W., et al.: The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015)

    Article  Google Scholar 

  30. Pires, J., et al.: Role of propane sultone as additive to improve the performance of lithium-rich cathode material at high potential. RSC Adv. 5, 42088–42094 (2015)

    Article  CAS  Google Scholar 

  31. Aurbach, D., et al.: On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim. Acta. 47, 1423–1439 (2002)

    Article  CAS  Google Scholar 

  32. Chen, L., Wang, K., Xie, X., Xie, J.: Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. J. Power Sources. 174, 538–543 (2007)

    Article  CAS  Google Scholar 

  33. Etacheri, V., et al.: Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire li-ion battery anodes. Langmuir. 28, 965–976 (2012)

    Article  CAS  Google Scholar 

  34. Miao, R., et al.: A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries. Sci. Rep. 6, 21771 (2016)

    Article  CAS  Google Scholar 

  35. Li, B., Xu, M., Li, T., Li, W., Hu, S.: Prop-1-ene-1,3-sultone as SEI formation additive in propylene carbonate-based electrolyte for lithium ion batteries. Electrochem. Commun. 17, 92–95 (2012)

    Article  CAS  Google Scholar 

  36. Choudhury, S., et al.: Designer interphases for the lithium-oxygen electrochemical cell. Sci. Adv. 3, 1–12 (2017)

    Article  Google Scholar 

  37. Li, N., Yin, Y., Yang, C., Guo, Y.: An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28, 1853–1858 (2016)

    Article  CAS  Google Scholar 

  38. Ye, H., et al.: Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode. Nano Energy. 36, 411–417 (2017)

    Article  CAS  Google Scholar 

  39. Miao, R., et al.: Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J. Power Sources. 271, 291–297 (2014)

    Article  CAS  Google Scholar 

  40. Qian, J., et al.: High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015)

    Article  CAS  Google Scholar 

  41. Ha, S., et al.: Magnesium (II) bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl. Mater. Interfaces. 6, 4063–4073 (2014)

    Article  CAS  Google Scholar 

  42. Jäckle, M., Groß, A.: Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J. Chem. Phys. 141, 174710 (2014)

    Article  Google Scholar 

  43. Wei, S., et al.: Metal-sulfur battery cathodes based on PAN-sulfur composites. J. Am. Chem. Soc. 137, 12143–12152 (2015)

    Article  CAS  Google Scholar 

  44. Chazalviel, J.-N.: Electrochemical aspects of the generation of rampified metallic electrodeposits. Phys. Rev. A. 42, 7355–7367 (1990)

    Article  CAS  Google Scholar 

  45. Ozhabes, Y., Gunceler, D., Arias, T.A.: Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression. arXiv. 1504.05799, 1–7 (2015)

    Google Scholar 

  46. Gunceler, D., Letchworth-Weaver, K., Sundararaman, R., Schwarz, K.A., Arias, T.A.: The importance of nonlinear fluid response in joint density-functional theory studies of battery systems. Model. Simul. Mater. Sci. Eng. 21, 74005 (2013)

    Article  Google Scholar 

  47. Gunceler, D., et al.: Nonlinear solvation models: Dendrite suppression on lithium surfaces. 16th International Workshop on Computation Physics and Materials Science: Total Energy and Force Methods, 10 (2013)

    Google Scholar 

  48. Gunceler, D., Arias, T.A.: Universal iso-density polarizable continuum model for molecular solvents. arXiv. 1403.6465, 1–11 (2014)

    Google Scholar 

  49. Garrity, K.F., Bennett, J.W., Rabe, K.M., Vanderbilt, D.: Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446–452 (2014)

    Article  CAS  Google Scholar 

  50. Zangmeister, D.Z., Turner, A.T., Pemberton, E.P.: Segregation of NaBr/NaCl crystals grown from aqueous solutions: Implications for sea salt surface chemistry. Geophys. Res. Lett. 28, 995–998 (2001)

    Article  CAS  Google Scholar 

  51. Wang, X., et al.: A chelation strategy for in-situ constructing surface oxygen vacancy on {001} facets exposed BiOBr nanosheets. Sci. Rep. 6, 24918 (2016)

    Article  CAS  Google Scholar 

  52. Naumkin, A.V., Kraut-Vass, A., Powell, C.J.: NIST X-ray Photoelectron Spectroscopy Database, Version 4.1. National Institute of Standards Technology, Gaithersburg (2012)

    Google Scholar 

  53. Wang, J., et al.: Room temperature Na/S batteries with sulfur composite cathode materials. Electrochem. Commun. 9, 31–34 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Energy, Advanced Research Projects Agency – Energy (ARPA-E) through award #DE-AR0000750. The work made use of electrochemical characterization facilities in the KAUST-CU Center for Energy and Sustainability, supported by the King Abdullah University of Science and Technology (KAUST) through Award # KUS-C1-018-02. Electron microscopy facilities at the Cornell Center for Materials Research (CCMR), an NSF-supported MRSEC through Grant DMR-1120296, were also used for the study. M.J.Z. and L.F.K. acknowledge support by the NSF (DMR-1654596).

Author information

Authors and Affiliations

Authors

Appendix: Supplementary Information

Appendix: Supplementary Information

Supplementary Fig. 6.1
figure 7

Cross-sectional images of NaBr-coated sodium and pristine sodium. (a) EDX mapping of cross sections of sodium anodes with NaBr surface layers after reacting for 1 min (left) and 5 min (right). The cross sections were obtained by cryo-focused ion beam milling; scale bar, 3 μm. (b) Room-temperature FIB-SEM cross-sectional imaging of pristine sodium shows a 5 μm thick oxidation layer on the surface; scale bar, 5 μm

Supplementary Fig. 6.2
figure 8

Surface composition of cycled sodium metal with NaBr coating obtained by two separate methods of EDX and XPS

Supplementary Fig. 6.3
figure 9

Equivalent circuit model for fitting Nyquist plots of impedance measurements. Here, R-bulk represents the ion transport in bulk electrolyte. R-interface1 represents interfacial resistance associated with the passivation layer between electrode and electrolyte. R-interface2 denotes the electronic transport in the interface. CPE1 and CPE2 represent the constant phase elements. Warburg element stands for solid-state diffusion contribution

Supplementary Fig. 6.4
figure 10

Impedance spectroscopy for different anode Nyquist plots at various temperatures for (a) Mg, (c) Na with NaCl, and (e) Na with NaI. Figures (b), (d), and (f) represent the temperature dependence of the reciprocal impedances (both bulk and interface) which is plotted as a function of Arrhenius temperature; the lines represent corresponding VFT fits. The labels represent the type of electrode interface used for the experiment

Supplementary Fig. 6.5
figure 11

Activation energy obtained by Arrhenius analysis. (a) Reciprocal of interfacial resistance plotted as a function of inverse temperature. The fits represent prediction from Arrhenius equation; (b) the activation energy is plotted for different interface or metal electrodes, obtained by Arrhenius fitting. Mg and Na represent cells with magnesium and sodium electrodes, respectively, without any modification, while NaCl, NaBr, and NaI represent data for respective halide-coated sodium metal

Supplementary Fig. 6.6
figure 12

Electrochemical setup for in situ visualization of sodium electrodeposition consisting of an airtight cuvette and two rods serving as current collectors for attaching the sodium electrodes. The cap is well sealed with a black tape to ensure that there is no leakage of electrolyte or air contamination

Supplementary Fig. 6.7
figure 13

Performance and characterization of Na||SPAN cell. (a) Charge and discharge capacity as a function of cycle no. for pristine sodium-based half-cell and NaBr-coated sodium-based half-cell comprising of the SPAN cathode. (b) SEM image of sodium metal after cycling in Na||SPAN cell with NaBr coating anode; scale bar, 100 μm. The adjacent image shows the EDX mapping of the elements of Na anode

Supplementary Table 6.1 Parameters of VFT analysis bulk impedance represents the ion transport in the electrolyte media, while interfacial impedance indicates the ion transport across electrode-electrolyte interface. The temperature-dependent data is fitted to VFT model

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choudhury, S. (2019). Designing Solid-Liquid Interphases for Sodium Batteries. In: Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-28943-0_6

Download citation

Publish with us

Policies and ethics