Skip to main content

Hybrid Hairy Nanoparticle Electrolytes Stabilize Lithium Metal Batteries

  • Chapter
  • First Online:
  • 770 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Rechargeable batteries comprising an energetic metal (e.g., Li, Na, Al) at the anode provide unparalleled opportunities for increasing the energy stored in batteries either on a per unit mass or volume basis. A major problem that has hindered development of such batteries for the last three decades concerns the electrochemical and mechanical instability of the interface between an energetic metal and an ion conducting organic liquid electrolyte. This study reports that hybrid electrolytes created by blending low volatility liquids with a bi-disperse mixture of hairy nanoparticles provide multiple attractive attributes for engineering electrolytes that are stable in the presence of reactive metals and at high charge potentials. Specifically, we report that such hybrid electrolytes exhibit exceptionally high-voltage stability (>7 V) over extended times; protect the Li metal anode by forming a particle-rich coating on the electrode that allows stable long-term cycling of the anode at high-coulombic efficiency; and manifest low bulk and interfacial resistance at room temperature that enables stable cycling of Li/LiFePO4 half-cells at a C/3 rate. We also investigate connections between particle curvature and ion transport in the bulk and at interfaces in such bi-disperse hybrid electrolytes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Qian, J., Henderson, W.A., Xu, W., Bhattacharya, P., Engelhard, M., Borodin, O., Zhang, J.-G.: High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015)

    Article  CAS  Google Scholar 

  2. Xu, W., Wang, J., Ding, F., Chen, X., Nasybulin, E., Zhang, Y., Zhang, J.-G.: Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513 (2014)

    Article  CAS  Google Scholar 

  3. Tu, Z., Nath, P., Lu, Y., Tikekar, M.D., Archer, L.A., et al.: Acc. Chem. Res. 48(11), 2947–2956 (2015)., acs.accounts.5b00427

    Article  CAS  Google Scholar 

  4. Zheng, G., Lee, S.W., Liang, Z., Lee, H.-W., Yan, K., Yao, H., Wang, H., Li, W., Chu, S., Cui, Y.: Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014)

    Article  CAS  Google Scholar 

  5. Aurbach, D., Zinigrad, E., Cohen, Y., Teller, H.: A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics. 148, 405–416 (2002)

    Article  CAS  Google Scholar 

  6. Guo, J., Wen, Z., Wu, M., Jin, J., Liu, Y.: Vinylene carbonate–LiNO3: a hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. Electrochem. Commun. 51, 59–63 (2015)

    Article  CAS  Google Scholar 

  7. Choudhury, S., Mangal, R., Agrawal, A., Archer, L.A.: A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 6, 10101 (2015)

    Article  CAS  Google Scholar 

  8. Chen, L., Wang, K., Xie, X., Xie, J.: Effect of Vinylene Carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. J. Power Sources. 174, 538–543 (2007)

    Article  CAS  Google Scholar 

  9. Xu, K., Zhang, S., Jow, T.R.: LiBOB as additive in LiPF[sub 6]-based lithium ion electrolytes. Electrochem. Solid-State Lett. 8, A365 (2005)

    Article  CAS  Google Scholar 

  10. Li, W., Yao, H., Yan, K., Zheng, G., Liang, Z., Chiang, Y.-M., Cui, Y.: The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015)

    Article  Google Scholar 

  11. Choudhury, S., Archer, L.A.: Lithium fluoride additives for stable cycling of lithium batteries at high current densities. Adv. Electron. Mater. 2, 1500246 (2015)

    Article  Google Scholar 

  12. Lu, Y., Tu, Z., Archer, L.A.: Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014)

    Article  CAS  Google Scholar 

  13. Pires, J., Timperman, L., Castets, A., Santos-pena, J., Dumont, E., Levasseur, S., Dedryvere, R., Tessier, C., Anouti, M.: Role of propane sultone as additive to improve the performance of lithium-rich cathode material at high potential. RSC Adv. 5(52), 42088–42094 (2015)

    Article  CAS  Google Scholar 

  14. Li, B., Xu, M., Li, T., Li, W., Hu, S.: Prop-1-Ene-1,3-sultone as SEI formation additive in propylene carbonate-based electrolyte for lithium ion batteries. Electrochem. Commun. 17, 92–95 (2012)

    Article  CAS  Google Scholar 

  15. Etacheri, V., Haik, O., Goffer, Y., Roberts, G.A., Stefan, I.C., Fasching, R., Aurbach, D.: Effect of Fluoroethylene Carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. Langmuir. 28, 965–976 (2012)

    Article  CAS  Google Scholar 

  16. Miao, R., Yang, J., Feng, X., Jia, H., Wang, J., Nuli, Y.: Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J. Power Sources. 271, 291–297 (2014)

    Article  CAS  Google Scholar 

  17. Luo, W., Zhou, L., Fu, K., Yang, Z., Wan, J., Manno, M., Yao, Y., Zhu, H., Yang, B., Hu, L.: A thermally conductive separator for stable Li metal anodes. Nano Lett. 15(9), 6149–6154 (2015)

    Article  CAS  Google Scholar 

  18. Liang, Z., Zheng, G., Liu, C., Liu, N., Li, W., Yan, K., Yao, H., Hsu, P.-C., Chu, S., Cui, Y.: Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 15(5), 2910–2916 (2015)

    Article  CAS  Google Scholar 

  19. Lu, Y., Tikekar, M., Mohanty, R., Hendrickson, K., Ma, L., Archer, L.A.: Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater. 5, 1402073 (2015)

    Article  Google Scholar 

  20. Schaefer, J.L., Yanga, D.A., Archer, L.A.: High lithium transference number electrolytes via creation of 3-dimensional, charged, nanoporous networks from dense functionalized nanoparticle composites. Chem. Mater. 25, 834–839 (2013)

    Article  CAS  Google Scholar 

  21. Ozhabes, Y., Gunceler, D., Arias, T.A.: Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression. arXiv. 1504(05799), 1–7 (2015)

    Google Scholar 

  22. Khurana, R., Schaefer, J.L., Archer, L.A., Coates, G.W.: Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014)

    Article  CAS  Google Scholar 

  23. Tu, Z., Kambe, Y., Lu, Y., Archer, L.A.: Nanoporous polymer-ceramic composite electrolytes for lithium metal batteries. Adv. Energy Mater. 4, 1300654 (2014)

    Article  Google Scholar 

  24. Gurevitch, I., Buonsanti, R., Teran, A.A., Gludovatz, B., Ritchie, R.O., Cabana, J., Balsara, N.P.: Nanocomposites of titanium dioxide and polystyrene-poly(ethylene oxide) block copolymer as solid-state electrolytes for lithium metal batteries. J. Electrochem. Soc. 160, A1611–A1617 (2013)

    Article  CAS  Google Scholar 

  25. Bouchet, R., Maria, S., Meziane, R., Aboulaich, A., Lienafa, L., Bonnet, J., Phan, T.N.T., Bertin, D., Gigmes, D., Devaux, D., et al.: Efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013)

    Article  CAS  Google Scholar 

  26. Weston, J.E., Steele, B.C.H.: Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes _ i b. Solid State Ionics. 7, 75–79 (1982)

    Article  CAS  Google Scholar 

  27. Croce, F., Scrosati, B.: Nanocomposite lithium ion conducting membranes. Ann. N.Y. Acad Sci. 984, 194–207 (2003)

    Article  CAS  Google Scholar 

  28. Agrawal, A., Choudhury, S., Archer, L.A.: A highly conductive, non-flammable polymer-nanoparticle hybrid electrolyte. RSC Adv. 5, 20800–20809 (2015)

    Article  CAS  Google Scholar 

  29. Srivastava, S., Schaefer, J.L., Yang, Z., Tu, Z., Archer, L.A.: 25Th anniversary article: polymer-particle composites: phase stability and applications in electrochemical energy storage. Adv. Mater. 26, 201–234 (2014)

    Article  CAS  Google Scholar 

  30. Lu, Y., Korf, K., Kambe, Y., Tu, Z., Archer, L.A.: Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries. Angew. Chemie. 126, 498–502 (2014)

    Article  Google Scholar 

  31. Lu, Y., Das, S.K., Moganty, S.S., Archer, L.A.: Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries. Adv. Mater. 24, 4430–4435 (2012)

    Article  CAS  Google Scholar 

  32. Korf, K.S., Lu, Y., Kambe, Y., Archer, L.A.: Piperidinium tethered nanoparticle-hybrid electrolyte for lithium metal batteries. J. Mater. Chem. A. 2, 11866–11873 (2014)

    Article  CAS  Google Scholar 

  33. Nugent, J.L., Moganty, S.S., Archer, L.A.: Nanoscale organic hybrid electrolytes. Adv. Mater. 22, 3677–3680 (2010)

    Article  CAS  Google Scholar 

  34. Schaefer, J.L., Moganty, S.S., Yanga, D.A., Archer, L.A.: Nanoporous hybrid electrolytes. J. Mater. Chem. 21, 10094 (2011)

    Article  CAS  Google Scholar 

  35. Choudhury, S., Agrawal, A., Kim, S.A., Archer, L.A.: Self-suspended suspensions of covalently grafted hairy nanoparticles. Langmuir. 31, 3222–3231 (2015)

    Article  CAS  Google Scholar 

  36. Jonscher, A.K.: The “universal” dielectric response. Nature. 267, 673–679 (1977)

    Article  CAS  Google Scholar 

  37. Zhang, Q., Archer, L.A.: Poly(ethylene oxide)/silica nanocomposites: structure and rheology. Langmuir. 18, 10435–10442 (2002)

    Article  CAS  Google Scholar 

  38. Moganty, S.S., Jayaprakash, N., Nugent, J.L., Shen, J., Archer, L.A.: Ionic-liquid-tethered nanoparticles: hybrid electrolytes. Angew. Chemie. 122, 9344–9347 (2010)

    Article  Google Scholar 

  39. Hussain, F.: Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J. Compos. Mater. 40, 1511–1575 (2006)

    Article  CAS  Google Scholar 

  40. Palmqvist, A.E.C.: Synthesis of ordered mesoporous materials using surfactant liquid crystals or micellar solutions. Curr. Opin. Colloid Interface Sci. 8, 145–155 (2003)

    Article  CAS  Google Scholar 

  41. Balazs, A.C., Emrick, T., Russell, T.P.: Nanoparticle polymer composites: meet two small worlds. Science. 314, 1107–1110 (2013)

    Article  Google Scholar 

  42. Mangal, R., Srivastava, S., Archer, L.A.: Phase stability and dynamics of entangled polymer–nanoparticle composites. Nat. Commun. 6, 1–9 (2015)

    Article  Google Scholar 

  43. Green, D.L., Mewis, J., Engineering, C., Uni, V., Way, E., Charlottes, V.: Connecting the wetting and rheological behaviors of poly (dimethylsiloxane)-grafted silica spheres in poly (dimethylsiloxane) melts. Langmuir. 22, 9546–9553 (2006)

    Article  CAS  Google Scholar 

  44. Srivastava, S., Agarwal, P., Archer, L.A.: Tethered nanoparticle-polymer composites: phase stability and curvature. Langmuir. 28, 6276–6281 (2012)

    Article  CAS  Google Scholar 

  45. McEwan, M., Green, D.: Rheological impacts of particle softness on wetted polymer-grafted silica nanoparticles in polymer melts. Soft Matter. 5, 1705 (2009)

    Article  CAS  Google Scholar 

  46. Dutta, N., Green, D.: Nanoparticle stability in semidilute and concentrated polymer solutions. Langmuir. 24, 5260–5269 (2008)

    Article  CAS  Google Scholar 

  47. Lindenblatt, G., Schärtl, W., Pakula, T., Schmidt, M.: Structure and dynamics of hairy spherical colloids in a matrix of nonentangled linear chains. Macromolecules. 34, 1730–1736 (2001)

    Article  CAS  Google Scholar 

  48. Oh, H., Green, P.F.: Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures. Nat. Mater. 8, 139–143 (2009)

    Article  CAS  Google Scholar 

  49. Meng, D., Kumar, S.K., Lane, J.M.D., Grest, G.S.: Effective interactions between grafted nanoparticles in a polymer matrix. Soft Matter. 8, 5002 (2012)

    Article  CAS  Google Scholar 

  50. Ohno, K., Morinaga, T., Takeno, S., Tsujii, Y., Fukuda, T.: Suspensions of silica particles grafted with concentrated polymer brush: effects of graft chain length on brush layer thickness and colloidal crystallization. Macromolecules. 40, 9143–9150 (2007)

    Article  CAS  Google Scholar 

  51. Glatter, O., Kratky, O.: Small angle x-ray scattering. Academic Press, New York (1982)

    Google Scholar 

  52. Zaccarelli, E., Mayer, C., Asteriadi, A., Likos, C., Sciortino, F., Roovers, J., Iatrou, H., Hadjichristidis, N., Tartaglia, P., Löwen, H., et al.: Tailoring the flow of soft glasses by soft additives. Phys. Rev. Lett. 95, 268301 (2005)

    Article  CAS  Google Scholar 

  53. Mayer, C., Zaccarelli, E., Stiakakis, E., Likos, C.N., Sciortino, F., Munam, A., Gauthier, M., Hadjichristidis, N., Iatrou, H., Tartaglia, P., et al.: Asymmetric caging in soft colloidal mixtures. Nat. Mater. 7, 780–784 (2008)

    Article  CAS  Google Scholar 

  54. Agrawal, A., Yu, H.-Y., Srivastava, S., Choudhury, S., Narayanan, S., Archer, L.: Dynamics and yielding of binary self-suspended nanoparticle fluids. Soft Matter. 11, 5224–5234 (2015)

    Article  CAS  Google Scholar 

  55. Ashcroft, N.W., Langreth, D.C.: Structure of binary liquid mixtures. I. Phys. Rev. 16, 685–692 (1967)

    Article  Google Scholar 

  56. Srivastava, S., Shin, J.H., Archer, L.A.: Structure and rheology of nanoparticle–polymer suspensions. Soft Matter. 8, 4097 (2012)

    Article  CAS  Google Scholar 

  57. Yu, H.-Y., Srivastava, S., Archer, L.A., Koch, D.L.: Structure factor of blends of solvent-free nanoparticle-organic hybrid materials: density-functional theory and small angle X-ray scattering. Soft Matter. 10, 9120–9135 (2014)

    Article  CAS  Google Scholar 

  58. Qu, D., Qu, D., Shi, H., Shi, H.: Studies of activated carbons used in double-layer capacitors. J. Power Sources. 74, 99–107 (1998)

    Article  CAS  Google Scholar 

  59. Shi, H.: Activated carbons and double layer capacitance. Electrochim. Acta. 41, 1633–1639 (1996)

    Article  CAS  Google Scholar 

  60. Choi, N.S., Chen, Z., Freunberger, S.A., Ji, X., Sun, Y.K., Amine, K., Yushin, G., Nazar, L.F., Cho, J., Bruce, P.G.: Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chemie Int. Ed. 51, 9994–10024 (2012)

    Article  CAS  Google Scholar 

  61. Flandrois, S., Simon, B.: Carbon materials for lithium-ion rechargeable batteries. Carbon N. Y. 37, 165–180 (1999)

    Article  CAS  Google Scholar 

  62. Shiraishi, S., Kurihara, H., Tsubota, H., Oya, A., Soneda, Y., Yamada, Y.: Electric double layer capacitance of highly porous carbon derived from lithium metal and polytetrafluoroethylene. Electrochem. Solid-State Lett. 4, A5–A8 (2001)

    Article  CAS  Google Scholar 

  63. Largeot, C., Portet, C., Chmiola, J., Taberna, P.L., Gogotsi, Y., Simon, P.: Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008)

    Article  CAS  Google Scholar 

  64. Lanfredi, S., Rodrigues, A.C.M.: Impedance spectroscopy study of the electrical conductivity and dielectric constant. J. Appl. Phys. 86, 2215 (1999)

    Article  CAS  Google Scholar 

  65. Payne, R., Theodorou, I.E.: Dielectric properties and relaxation in ethylene carbonate and propylene carbonate. J. Phys. Chem. 76, 2892–2900 (1972)

    Article  CAS  Google Scholar 

  66. Simeral, L., Ameyib, R.L., Amey, L.: Dielectric properties of liquid propylene carbonate. J. Phys. Chem. 74, 1968–1971 (1970)

    Article  Google Scholar 

  67. Sengwa, R.J., Kaur, K., Chaudhary, R.: Dielectric properties of low molecular weight poly(ethylene glycol)s. Polym. Int. 608, 599–608 (2000)

    Article  Google Scholar 

  68. Schneider, U., Lunkenheimer, P., Brand, R., Loidl, A.: Broadband dielectric spectroscopy on glass-forming propylene carbonate. Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics. 59, 6924–6936 (1999)

    CAS  Google Scholar 

  69. Bruce, P.: Conductivity and transference number measurements on polymer electrolytes. Solid State Ionics. 28-30, 918–922 (1988)

    Article  Google Scholar 

  70. Appetecchi, G.B.: A new class of advanced polymer electrolytes and their relevance in plastic-like, rechargeable lithium batteries. J. Electrochem. Soc. 143, 6 (1996)

    Article  CAS  Google Scholar 

  71. Jorne, J.: Transference number approaching unity in nanocomposite electrolytes. Nano Lett. 6, 2973–2976 (2006)

    Article  CAS  Google Scholar 

  72. Capuano, F., Croce, F., Scrosati, B.: Composite polymer electrolytes. J. Electrochem. Soc. 203, 197–203 (2003)

    Google Scholar 

  73. Ding, F., Xu, W., Graff, G.L., Zhang, J., Sushko, M.L., Chen, X., Shao, Y., Engelhard, M.H., Nie, Z., Xiao, J., et al.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix: Supplementary Information

Appendix: Supplementary Information

Supplementary Fig. 2.1
figure 7

Variation of glass transition temperature (open symbols) and diffusivity (close symbols) as a function of fraction of larger particles xL, for core volume fractions (a) ϕ = 0.2 and (b) ϕ = 0.4. The dashed lines are guide to the eye

Supplementary Fig. 2.2
figure 8

Evolution of structure factor S(q) as a function of the wave vector q at volume fractions Φ = 0.2, 0.3, and 0.4 for (a) xL = 0, (b) xL = 0.25, (c) xL = 0.75, and (d) xL = 1. The open symbols are experimental values, and the dashed lines are fit to experimental S(q) using binary hard sphere model

Supplementary Fig. 2.3
figure 9

Variation in three components of structure factor, viz., S11, S12, and S22, as estimated from binary hard sphere model predictions. Here, 1 and 2 indicate smaller and larger particles, respectively. The structure factors are shown for xL = 0.5 for different volume fractions (a) Φ = 0.2, (b) Φ = 0.3, and (c) Φ = 0.4

Supplementary Fig. 2.4
figure 10

Electrical double layer (square symbols) and electrochemical capacitance (triangle symbols) for different values of xL at (a) Φ = 0.2 and (b) Φ = 0.4

Supplementary Fig. 2.5
figure 11

(a) Electrochemical impedance measurements for a symmetric lithium cell before polarization (open symbols) and after steady state is reached (closed symbols). R0 and Rss were determined by fitting these impedances to the circuit model mentioned in the main text. (b) Current decay for the cell undergoing polarization at 20 mV potential. I0 and ISS were used in the calculations as observed in the plot

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choudhury, S. (2019). Hybrid Hairy Nanoparticle Electrolytes Stabilize Lithium Metal Batteries. In: Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-28943-0_2

Download citation

Publish with us

Policies and ethics