Skip to main content

How the Sleeve Gastrectomy Works: Metabolically

  • Chapter
  • First Online:
The Perfect Sleeve Gastrectomy

Abstract

Sleeve gastrectomy (SG) has become the most popular bariatric operation in recent years. Its relative technical ease compared to other metabolic and bariatric operations has allowed SG to become one of the most studied bariatric operations in preclinical models, which has led to a number of novel insights and potential shared mechanisms across bariatric operations. Herein, the rationale for the weight loss and metabolic changes associated with bariatric surgery is discussed, including contributions of gastrointestinal hormones, nutrient delivery and bile acid metabolic changes that have recently been implicated in preclinical studies as being necessary for the efficacy of SG. Commonly cited theoretical mechanisms that have been debunked are also mentioned. Despite significant progress on the mechanisms underlying SG, a single driving force has not yet been identified – and most likely not be identified as multiple factors contribute to the metabolic benefits of SG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mason EE, ITO C. Gastric bypass. Ann Surg. 1969;170:329–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weckesser EC, Chinn AB, Scott MW Jr, Price JW. Extensive resection of the small intestine. Am J Surg. 1949;78:706–14.

    Article  CAS  PubMed  Google Scholar 

  3. Kremen AJ, Linner JH, Nelson CH. An experimental evaluation of the nutritional importance of proximal and distal small intestine. Ann Surg. 1954;140:439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Payne JH, DeWind LT, Commons RR. Metabolic observations in patients with jejunocolic shunts. Am J Surg. 1963;106:273–89.

    Article  CAS  PubMed  Google Scholar 

  5. Pories WJ, Swanson MS, MacDonald KG, Long SB, Morris PG, Brown BM, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222:339–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schauer PR, Ikramuddin S, Gourash W, Ramanathan R, Luketich J. Outcomes after laparoscopic Roux-en-Y gastric bypass for morbid obesity. Ann Surg. 2000;232:515–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grayson BE, Schneider KM, Woods SC, Seeley RJ. Improved rodent maternal metabolism but reduced intrauterine growth after vertical sleeve gastrectomy. Sci Trans Med. 2013;5:199ra112–2.

    Article  CAS  Google Scholar 

  8. National Research Council (US) Subcommittee on Laboratory Animal Nutrition. Nutrient Requirements of Laboratory Animals: Fourth Revised Edition, 1995. Washington (DC): National Academies Press (US); 1995. Available from: https://www.ncbi.nlm.nih.gov/books/NBK231927/doi:10.17226/4758.

  9. Risstad H, Søvik TT, Engström M, Aasheim ET, Fagerland MW, Olsén MF, et al. Five-year outcomes after laparoscopic gastric bypass and laparoscopic duodenal switch in patients with body mass index of 50 to 60: a randomized clinical trial. JAMA Surg. 2015;150:352–61.

    Article  PubMed  Google Scholar 

  10. Wang G, Agenor K, Pizot J, Kotler DP, Harel Y, Van Der Schueren BJ, et al. Accelerated gastric emptying but no carbohydrate malabsorption 1 year after gastric bypass surgery (GBP). Obes Surg. 2012;22:1263–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carswell KA, Vincent RP, Belgaumkar AP, Sherwood RA, Amiel SA, Patel AG, et al. The effect of bariatric surgery on intestinal absorption and transit time. Obes Surg. 2014;24:796–805.

    Article  PubMed  Google Scholar 

  12. Frikke-Schmidt H, Seeley RJ. Defending a new hypothesis of how bariatric surgery works. Obesity (Silver Spring). 2016;24:555.

    Article  Google Scholar 

  13. Seeley RJ, Chambers AP, Sandoval DA. The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes. Cell Metab. 2015;21:369–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Albaugh VL, Banan B, Ajouz H, Abumrad NN, Flynn CR. Bile acids and bariatric surgery. Mol Asp Med. 2017;56:75–89.

    Article  CAS  Google Scholar 

  15. Jørgensen NB, Dirksen C, Bojsen-Møller KN, Jacobsen SH, Worm D, Hansen DL, et al. Exaggerated glucagon-like peptide 1 response is important for improved beta-cell function and glucose tolerance after Roux-en-Y gastric bypass in patients with type 2 diabetes. Diabetes. 2013;62:3044–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Salehi M, Prigeon RL, D’Alessio DA. Gastric bypass surgery enhances glucagon-like peptide 1-stimulated postprandial insulin secretion in humans. Diabetes. 2011;60:2308–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jørgensen NB, Jacobsen SH, Dirksen C, Bojsen-Møller KN, Naver L, Hvolris L, et al. Acute and long-term effects of Roux-en-Y gastric bypass on glucose metabolism in subjects with Type 2 diabetes and normal glucose tolerance. Am J Physiol Endocrinol Metab. 2012;303:E122–31.

    Article  PubMed  CAS  Google Scholar 

  18. Hajnal A, Kovacs P, Ahmed T, Meirelles K, Lynch CJ, Cooney RN. Gastric bypass surgery alters behavioral and neural taste functions for sweet taste in obese rats. Am J Physiol Gastrointest Liver Physiol. 2010;299:G967–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hajnal A, Zharikov A, Polston JE, et al. Alcohol reward is increased after Roux-en-Y gastric bypass in dietary obese rats with differential effects following ghrelin antagonism. PLoS One. 2012;7(11):e49121. https://doi.org/10.1371/journal.pone.0049121.

  20. Thanos PK, Michaelides M, Subrize M, Miller ML, Bellezza R, Cooney RN, et al. Roux-en-Y gastric bypass alters brain activity in regions that underlie reward and taste perception. PLoS One. 2015;10:e0125570.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Browning KN, Fortna SR, Hajnal A. Roux-en-Y gastric bypass reverses the effects of diet-induced obesity to inhibit the responsiveness of central vagal motoneurones. J Physiol. 2013;591:2357–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kong L-C, Tap J, Aron-Wisnewsky J, Pelloux V, Basdevant A, Bouillot J-L, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. 2013;98:16–24.

    Article  CAS  PubMed  Google Scholar 

  23. Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–9.

    Article  CAS  PubMed  Google Scholar 

  24. Flynn CR, Albaugh VL, Cai S, Cheung-Flynn J, Williams PE, Brucker RM, et al. Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery. Nat Commun. 2015;6:7715.

    Article  CAS  PubMed  Google Scholar 

  25. Palleja A, Kashani A, Allin KH, Nielsen T, Zhang C, Li Y, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med. 2016;8:67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Dirksen C, Damgaard M, Bojsen-Møller KN, Jørgensen NB, Kielgast U, Jacobsen SH, et al. Fast pouch emptying, delayed small intestinal transit, and exaggerated gut hormone responses after Roux-en-Y gastric bypass. Neurogastroenterol Motil. 2013;25:346–e255.

    Article  CAS  PubMed  Google Scholar 

  27. Holst JJ, Gribble F, Horowitz M, Rayner CK. Roles of the Gut in Glucose Homeostasis. Diabetes Care. 2016;39:884–92.

    Article  CAS  PubMed  Google Scholar 

  28. Lips MA, de Groot GH, van Klinken JB, Aarts E, Berends FJ, Janssen IM, et al. Calorie restriction is a major determinant of the short-term metabolic effects of gastric bypass surgery in obese type 2 diabetic patients. Clin Endocrinol. 2014;80:834–42.

    Article  CAS  Google Scholar 

  29. Jackness C, Karmally W, Febres G, Conwell IM, Ahmed L, Bessler M, et al. Very low-calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and β-cell Function in type 2 diabetic patients. Diabetes. 2013;62:3027–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Isbell JM, Tamboli RA, Hansen EN, Saliba J, Dunn JP, Phillips SE, et al. The importance of caloric restriction in the early improvements in insulin sensitivity after Roux-en-Y gastric bypass surgery. Diabetes Care. 2010;33:1438–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nuttall FQ, Almokayyad RM, Gannon MC. Comparison of a carbohydrate-free diet vs. fasting on plasma glucose, insulin and glucagon in type 2 diabetes. Metabolism. 2015;64:253–62.

    Article  CAS  PubMed  Google Scholar 

  32. Henry RR, Wiest-Kent TA, Schaeffer L, Kolterman OG, Olefsky JM. Metabolic consequences of very-low-calorie diet therapy in obese non-insulin-dependent diabetic and nondiabetic subjects. Diabetes. 1986;35:155–64.

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt JB, Pedersen SD, Gregersen NT, Vestergaard L, Nielsen MS, Ritz C, et al. Effects of RYGB on energy expenditure, appetite and glycaemic control: a randomized controlled clinical trial. Int J Obes (Lond). 2016;40:281–90.

    Article  CAS  Google Scholar 

  34. Lips MA, de Groot GH, Berends FJ, Wiezer R, van Wagensveld BA, Swank DJ, et al. Calorie restriction and Roux-en-Y gastric bypass have opposing effects on circulating FGF21 in morbidly obese subjects. Clin Endocrinol. 2014;81:862–70.

    Article  CAS  Google Scholar 

  35. Lips MA, Van Klinken JB, van Harmelen V, Dharuri HK, PAC ‘t H, JFJ L, et al. Roux-en-Y gastric bypass surgery, but not calorie restriction, reduces plasma branched-chain amino acids in obese women independent of weight loss or the presence of type 2 diabetes. Diabetes Care. 2014;37:3150–6.

    Article  CAS  PubMed  Google Scholar 

  36. Wing RR, Lang W, Wadden TA, Safford M, Knowler WC, Bertoni AG, et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care. 2011;34:1481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sjöström CD, Lissner L, Wedel H, Sjöström L. Reduction in incidence of diabetes, hypertension and lipid disturbances after intentional weight loss induced by bariatric surgery: the SOS Intervention Study. Obes Res. 1999;7:477–84.

    Article  PubMed  Google Scholar 

  38. Karlsson J, Taft C, Rydén A, Sjöström L, Sullivan M. Ten-year trends in health-related quality of life after surgical and conventional treatment for severe obesity: the SOS intervention study. Int J Obes Relat Metab Disord. 2007;31:1248–61.

    Article  CAS  Google Scholar 

  39. Sjöström L. Review of the key results from the Swedish Obese Subjects (SOS) trial – a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273:219–34.

    Article  PubMed  Google Scholar 

  40. Adams TD, Davidson LE, Litwin SE, Kolotkin RL, LaMonte MJ, Pendleton RC, et al. Health benefits of gastric bypass surgery after 6 years. JAMA. 2012;308:1122–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD, et al. Long-term mortality after gastric bypass surgery. N Engl J Med. 2007;357:753–61.

    Article  CAS  PubMed  Google Scholar 

  42. Adams TD, Davidson LE, Litwin SE, Kim J, Kolotkin RL, Nanjee MN, et al. Weight and metabolic outcomes 12 years after gastric bypass. N Engl J Med. 2017;377:1143–55.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ikramuddin S, Korner J, Lee W-J, Thomas AJ, Connett JE, Bantle JP, et al. Lifestyle intervention and medical management with vs without Roux-en-Y gastric bypass and control of hemoglobin A1c, LDL cholesterol, and systolic blood pressure at 5 years in the diabetes surgery study. JAMA. 2018;319:266–78.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Brethauer SA, Navaneethan SD, et al. Bariatric surgery versus intensive medical therapy for diabetes–3-year outcomes. N Engl J Med. 2014;370:2002–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Nanni G, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2015;386:964–73.

    Article  PubMed  Google Scholar 

  46. Aminian A, Jamal M, Augustin T, Corcelles R, Kirwan JP, Schauer PR, et al. Failed surgical weight loss does not necessarily mean failed metabolic effects. Diabetes Technol Ther. 2015;17:682–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.

    Article  CAS  PubMed  Google Scholar 

  48. Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346:1623–30.

    Article  PubMed  Google Scholar 

  49. Choi E, Roland JT, Barlow BJ, O’Neal R, Rich AE, Nam KT, et al. Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum. Gut. 2014;63:1711–20.

    Article  PubMed  Google Scholar 

  50. Karamanakos SN, Vagenas K, Kalfarentzos F, Alexandrides TK. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy. Ann Surg. 2008;247:401–7.

    Article  PubMed  Google Scholar 

  51. Chambers AP, Kirchner H, Wilson-Perez HE, Willency JA, Hale JE, Gaylinn BD, et al. The effects of vertical sleeve gastrectomy in rodents are ghrelin independent. Gastroenterology. 2013;144:50–5.

    Article  CAS  PubMed  Google Scholar 

  52. Albarran-Zeckler RG, Sun Y, Smith RG. Physiological roles revealed by ghrelin and ghrelin receptor deficient mice. Peptides. 2011;32:2229–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McFarlane MR, Brown MS, Goldstein JL, Zhao T-J. Induced ablation of ghrelin cells in adult mice does not decrease food intake, body weight, or response to high-fat diet. Cell Metab. 2014;20:54–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mani BK, Zigman JM. Ghrelin as a survival hormone. Trends Endocrinol Metab. 2017;28:843–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kulkarni BV, LaSance K, Sorrell JE, Lemen L, Woods SC, Seeley RJ, et al. The role of proximal versus distal stomach resection in the weight loss seen after vertical sleeve gastrectomy. Am J Physiol Regul Integr Comp Physiol. 2016;311:R979–87.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tong J, Prigeon RL, Davis HW, Bidlingmaier M, Kahn SE, Cummings DE, et al. Ghrelin suppresses glucose-stimulated insulin secretion and deteriorates glucose tolerance in healthy humans. Diabetes. 2010;59:2145–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Page LC, Gastaldelli A, Gray SM, D’Alessio DA, Tong J. Interaction of GLP-1 and ghrelin on glucose tolerance in healthy humans. Diabetes. 2018;67:1976–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Peterli R, Steinert RE, Woelnerhanssen B, Peters T, Christoffel-Courtin C, Gass M, et al. Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes Surg. 2012;22:740–8.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Papamargaritis D, le Roux CW, Sioka E, Koukoulis G, Tzovaras G, Zacharoulis D. Changes in gut hormone profile and glucose homeostasis after laparoscopic sleeve gastrectomy. Surg Obes Relat Dis. 2013;9:192–201.

    Article  PubMed  Google Scholar 

  60. Mallipedhi A, Prior SL, Barry JD, Caplin S, Baxter JN, Stephens JW. Temporal changes in glucose homeostasis and incretin hormone response at 1 and 6 months after laparoscopic sleeve gastrectomy. Surg Obes Relat Dis. 2014;10:860–9.

    Article  PubMed  Google Scholar 

  61. Sista F, Abruzzese V, Clementi M, Carandina S, Cecilia M, Amicucci G. The effect of sleeve gastrectomy on GLP-1 secretion and gastric emptying: a prospective study. Surg Obes Relat Dis. 2017;13:7–14.

    Article  PubMed  Google Scholar 

  62. Chambers AP, Smith EP, Begg DP, Grayson BE, Sisley S, Greer T, et al. Regulation of gastric emptying rate and its role in nutrient-induced GLP-1 secretion in rats after vertical sleeve gastrectomy. Am J Physiol Endocrinol Metab. 2014;306:E424–32.

    Article  CAS  PubMed  Google Scholar 

  63. Alamuddin N, Vetter ML, Ahima RS, Hesson L, Ritter S, Minnick A, et al. Changes in fasting and prandial gut and adiposity hormones following vertical sleeve gastrectomy or Roux-en-Y-gastric bypass: an 18-month prospective study. Obes Surg. 2016;27:1563–72.

    Article  Google Scholar 

  64. Kellum JM, Kuemmerle JF, O’Dorisio TM, Rayford P, Martin D, Engle K, et al. Gastrointestinal hormone responses to meals before and after gastric bypass and vertical banded gastroplasty. Ann Surg. 1990;211:763–70; discussion770–1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wilson-Perez HE, Chambers AP, Ryan KK, Li B, Sandoval DA, Stoffers D, et al. Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like Peptide 1 receptor deficiency. Diabetes. 2013;62:2380–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Patel A, Yusta B, Matthews D, Charron MJ, Seeley RJ, Drucker DJ. GLP-2 receptor signaling controls circulating bile acid levels but not glucose homeostasis in Gcgr mice and is dispensable for the metabolic benefits ensuing after vertical sleeve gastrectomy. Mol Metab. 2018;16:45–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Douros JD, Lewis AG, Smith EP, Niu J, Capozzi M, Wittmann A, et al. Enhanced glucose control following vertical sleeve gastrectomy does not require a β-cell glucagon-like peptide 1 receptor. Diabetes. 2018;67:1504–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jiménez A, Mari A, Casamitjana R, Lacy A, Ferrannini E, Vidal J. GLP-1 and glucose tolerance after sleeve gastrectomy in morbidly obese subjects with type 2 diabetes. Diabetes. 2014;63:3372–7.

    Article  PubMed  CAS  Google Scholar 

  69. Garibay D, McGavigan AK, Lee SA, Ficorilli JV, Cox AL, Michael MD, et al. β-cell glucagon-like peptide-1 receptor contributes to improved glucose tolerance after vertical sleeve gastrectomy. Endocrinology. 2016;157:3405–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362–5.

    Article  CAS  PubMed  Google Scholar 

  71. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284:1365–8.

    Article  CAS  PubMed  Google Scholar 

  72. Chiang JYL. Bile acid metabolism and signaling. Compr Physiol. 2013;3:1191–212.

    PubMed  PubMed Central  Google Scholar 

  73. Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014;509:183–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Myronovych A, Kirby M, Ryan KK, Zhang W, Jha P, Setchell KD, et al. Vertical sleeve gastrectomy reduces hepatic steatosis while increasing serum bile acids in a weight-loss-independent manner. Obesity (Silver Spring). 2014;22:390–400.

    Article  CAS  Google Scholar 

  75. Jahansouz C, Xu H, Hertzel AV, Serrot FJ, Kvalheim N, Cole A, et al. Bile acids increase independently from hypocaloric restriction after bariatric surgery. Ann Surg. 2016;264:1022–8.

    Article  PubMed  Google Scholar 

  76. Steinert RE, Peterli R, Keller S, Meyer-Gerspach AC, Drewe J, Peters T, et al. Bile acids and gut peptide secretion after bariatric surgery: a 1-year prospective randomized pilot trial. Obesity (Silver Spring). 2013;21:E660–8.

    Article  CAS  Google Scholar 

  77. Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10:167–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. McGavigan AK, Garibay D, Henseler ZM, Chen J, Bettaieb A, Haj FG, et al. TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice. Gut. 2017;66:226–34.

    Article  CAS  PubMed  Google Scholar 

  79. Ding L, Sousa KM, Jin L, Dong B, Kim BW, Ramirez R, et al. Vertical sleeve gastrectomy activates GPBAR-1/TGR5 to sustain weight loss, improve fatty liver, and remit insulin resistance in mice. Hepatology. 2016;64:760–73.

    Article  CAS  PubMed  Google Scholar 

  80. Albaugh VL, Flynn CR, Cai S, Xiao Y, Tamboli RA, Abumrad NN. Early increases in bile acids post Roux-en-Y gastric bypass are driven by insulin-sensitizing, secondary bile acids. J Clin Endocrinol Metab. 2015;100:E1225–33.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tsuchida T, Shiraishi M, Ohta T, Sakai K, Ishii S. Ursodeoxycholic acid improves insulin sensitivity and hepatic steatosis by inducing the excretion of hepatic lipids in high-fat diet–fed KK-Ay mice. Metab Clin Exp Elsevier. 2012;61:944–53.

    Article  CAS  Google Scholar 

  82. Kars M, Yang L, Gregor MF, Mohammed BS, Pietka TA, Finck BN, et al. Tauroursodeoxycholic Acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes. 2010;59:1899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stefater MA, Wilson-Pérez HE, Chambers AP. All bariatric surgeries are not created equal: insights from mechanistic comparisons. Endocrine. 2012;33:595–622.

    CAS  Google Scholar 

  84. Wilson-Pérez HE, Chambers AP, Sandoval DA, Stefater MA, Woods SC, Benoit SC, et al. The effect of vertical sleeve gastrectomy on food choice in rats. Int J Obes. 2013;37:288–95.

    Article  CAS  Google Scholar 

  85. le Roux CW, Bueter M, Theis N, Werling M, Ashrafian H, Löwenstein C, et al. Gastric bypass reduces fat intake and preference. Am J Physiol Regul Integr Comp Physiol. 2011;301:R1057–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Chambers AP, Wilson-Perez HE, McGrath S, Grayson BE, Ryan KK, D’Alessio DA, et al. Effect of vertical sleeve gastrectomy on food selection and satiation in rats. Am J Physiol Endocrinol Metab. 2012;303:E1076–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Stefater MA, Sandoval DA, Chambers AP, Wilson-Perez HE, Hofmann SM, Jandacek R, et al. Sleeve gastrectomy in rats improves postprandial lipid clearance by reducing intestinal triglyceride secretion. Gastroenterology. 2011;141:939–49.e1–4.

    Article  CAS  Google Scholar 

  88. Cal P, Deluca L, Jakob T, Fernández E. Laparoscopic sleeve gastrectomy with 27 versus 39 Fr bougie calibration: a randomized controlled trial. Surg Endosc. 2015;30:1812–5.

    Article  PubMed  Google Scholar 

  89. Parikh M, Gagner M, Heacock L, Strain G, Dakin G, Pomp A. Laparoscopic sleeve gastrectomy: does bougie size affect mean %EWL? Short-term outcomes. Surg Obes Relat Dis. 2008;4:528–33.

    Article  PubMed  Google Scholar 

  90. Atkins ER, Preen DB, Jarman C, Cohen LD. Improved obesity reduction and co-morbidity resolution in patients treated with 40-French bougie versus 50-French bougie four years after laparoscopic sleeve gastrectomy. Analysis of 294 patients. Obes Surg. 2011;22:97–104.

    Article  Google Scholar 

  91. Spivak H, Rubin M, Sadot E, Pollak E, Feygin A, Goitein D. Laparoscopic sleeve gastrectomy using 42-French versus 32-French bougie: the first-year outcome. Obes Surg. 2014;24:1090–3.

    Article  PubMed  Google Scholar 

  92. Patti MG, Schlottmann F. Gastroesophageal reflux after sleeve gastrectomy. JAMA Surg. 2018;153:1147–2.

    Article  PubMed  Google Scholar 

  93. Mandeville Y, Van Looveren R, Vancoillie P-J, Verbeke X, Vandendriessche K, Vuylsteke P, et al. Moderating the enthusiasm of sleeve gastrectomy: up to fifty percent of reflux symptoms after ten years in a consecutive series of one hundred laparoscopic sleeve gastrectomies. Obes Surg. 2017;27:1797–803.

    Article  PubMed  Google Scholar 

  94. Robert M, Pasquer A, Pelascini E, Valette P-J, Gouillat C, Disse E. Impact of sleeve gastrectomy volumes on weight loss results: a prospective study. Surg Obes Relat Dis. 2016;12:1286–91.

    Article  PubMed  Google Scholar 

  95. Sista F, Abruzzese V, Clementi M, Carandina S, Amicucci G. Effect of resected gastric volume on ghrelin and GLP-1 plasma levels: a prospective study. J Gastrointest Surg. 2016;20:1931–41.

    Article  PubMed  Google Scholar 

  96. Obeidat FW, Shanti HA, Mismar AA, Elmuhtaseb MS, Al-Qudah MS. Volume of resected stomach as a predictor of excess weight loss after sleeve gastrectomy. Obes Surg. 2014;24:1904–8.

    Article  PubMed  Google Scholar 

  97. Pawanindra L, Vindal A, Midha M, Nagpal P, Manchanda A, Chander J. Early post-operative weight loss after laparoscopic sleeve gastrectomy correlates with the volume of the excised stomach and not with that of the sleeve! Preliminary data from a multi-detector computed tomography-based study. Surg Endosc. 2015;29:2921–7.

    Article  PubMed  Google Scholar 

  98. Tam CS, Rigas G, Heilbronn LK, Matisan T, Probst Y, Talbot M. Energy adaptations persist 2 years after sleeve gastrectomy and gastric bypass. Obes Surg. 2016;26(2):459–63.

    Article  PubMed  Google Scholar 

  99. Tamboli RA, Hossain HA, Marks PA, Eckhauser AW, Rathmacher JA, Phillips SE, et al. Body composition and energy metabolism following Roux-en-Y gastric bypass surgery. Obesity (Silver Spring). 2010;18:1718–24.

    Article  CAS  Google Scholar 

  100. Knuth ND, Johannsen DL, Tamboli RA, Marks-Shulman PA, Huizenga R, Chen KY, et al. Metabolic adaptation following massive weight loss is related to the degree of energy imbalance and changes in circulating leptin. Obesity (Silver Spring). 2014;22:2563–9.

    Google Scholar 

  101. Andalib A, Aminian A. Sleeve gastrectomy and diabetes: is cure possible? Adv Surg. 2017;51:29–40.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vance L. Albaugh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Albaugh, V.L., Schauer, P.R., Aminian, A. (2020). How the Sleeve Gastrectomy Works: Metabolically. In: Gagner, M., Cardoso, A., Palermo, M., Noel, P., Nocca, D. (eds) The Perfect Sleeve Gastrectomy. Springer, Cham. https://doi.org/10.1007/978-3-030-28936-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28936-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28935-5

  • Online ISBN: 978-3-030-28936-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics