Skip to main content

Transfinite Induction

  • Chapter
  • First Online:
A Model–Theoretic Approach to Proof Theory

Part of the book series: Trends in Logic ((TREN,volume 51))

  • 524 Accesses

Abstract

In this chapter we present an approach to the classical results due to Gentzen. In 1936, Gentzen proved consistency of arithmetic using transfinite induction up to \(\varepsilon _0\). We show how to prove transfinite induction up to any \(\alpha <\varepsilon _0\) within Peano Arithmetic. The proofs exhibit a tradeoff between a strength of a needed fragment of Peano arithmetic and the length of induction up to a given ordinal \(\alpha \), and the complexity of an induction formula. We introduce the method of idicators to show independence of combinatorial statements from fragments of Peano arithmetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Unfortunately, these parts of the book presenting the work from [9] were not finished.

References

  1. Takeuti, G. (1987). Proof theory.

    Google Scholar 

  2. Hájek, P., & Pudlák, P. (1993). Metamathematics of first-order arithmetic. Perspectives in mathematical logic. Berlin: Springer.

    Google Scholar 

  3. Ratajczyk, Z. (1988). A combinatorial analysis of functions provably recursive in \(\sum _{n}\). Fundamenta Mathematicae 3(130), 191–213. issn: 0016-2736. https://doi.org/10.4064/fm-130-3-191-213.

    Article  Google Scholar 

  4. Sommer, R. (1990.) Transfinite induction and hierarchies of functions generated by transfinite recursion within Peano arithmetic. Ph.D thesis, University of California, Berkeley.

    Google Scholar 

  5. Sommer, R. (1995). Transfinite induction within Peano arithmetic. Annals of Pure and Applied Logic 76(3), 231–289. issn: 01680072. https://doi.org/10.1016/0168-0072(95)00029-G.

    Article  Google Scholar 

  6. Ketonen, J., & Solovay, R. (1981). Rapidly growing Ramsey functions. The Annals of Mathematics 113(2), 267. https://doi.org/10.2307/2006985.

    Article  Google Scholar 

  7. Mints, G. E. (1971). Exact estimation of the provability of transfinite induction in initial parts of arithmetic. Zapiski Nauchnykh Seminarov; Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 20, 134–144; 286.

    Google Scholar 

  8. Kotlarski, H., & Ratajczyk, Z. (1990). Inductive full satisfaction classes. Annals of Pure and Applied Logic 47(3), 199–223. issn: 01680072. https://doi.org/10.1016/0168-0072(90)90035-Z.

    Article  Google Scholar 

  9. Kotlarski, H., & Ratajczyk, Z. (1990). More on induction in the language with a satisfaction class. Mathematical Logic Quarterly 36(5), 441–454. issn: 09425616. https://doi.org/10.1002/malq.19900360509.

    Article  Google Scholar 

  10. Paris, J., & Harrington, L. (1977). A Mathematical Incompleteness in Peano Arithmetic. Handbook of mathematical logic. Studies in logic and the foundations of mathematics (Vol. 90, pp. 1133–1142). Amsterdam: Elsevier. isbn: 9780444863881. https://doi.org/10.1016/S0049-237X(08)71130-3.

    Chapter  Google Scholar 

  11. Bigorajska, T., & Kotlarski, H. (2006). Partitioning alpha-large sets: Some lower bounds. Transactions of the American Mathematical Society 358(11), 4981–5002. issn: 00029947. https://doi.org/10.1090/S0002-9947-06-03883-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kotlarski, H. (2019). Transfinite Induction. In: Adamowicz, Z., Bigorajska, T., Zdanowski, K. (eds) A Model–Theoretic Approach to Proof Theory. Trends in Logic, vol 51. Springer, Cham. https://doi.org/10.1007/978-3-030-28921-8_4

Download citation

Publish with us

Policies and ethics