Skip to main content

Neighborhood Based Optimization Algorithm

  • Chapter
  • First Online:
  • 420 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 854))

Abstract

Evolutionary Computation (EC) algorithms are proposed as stochastic methods to solve complex optimization problems. Recently, the design of EC methods incorporates the design of complex operators to simulate the used metaphor. On the other hand, in a multi-agent system, the complex interactions among agents are coordinated, by the synergy of simple local behaviors. In this paper, a novel EC algorithm called Neighborhood-based Consensus for Continuous Optimization (NCCO) is presented. NCCO combines the simplicity of local consensus formulations, and reactive responses, based on neighborhood movement decisions to conduct the search strategy. NCCO considers a double pair of evolutionary operators for exploration-exploitation stages. The first pair; separation-alignment, conducts the search into wider zones, while the second pair; cohesion-seek, locally explores and exploits search spaces concentrating all agents into groups. These features guarantee leaderless movement decisions, since traditional EC approaches follow false-positive solutions, increasing the possibility of being trapped in local minima. Under such assumptions, the proposed algorithm exhibits a higher performance, against several state-of-art EC approaches evaluating common benchmark functions, and engineering design problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. X.-S. Yang, Engineering Optimization: An Introduction with Metaheuristic Application (Wiley, Hoboken, USA, 2010)

    Book  Google Scholar 

  2. P.M. Pardalos, H.E. Romeijn, H. Tuy, Recent developments and trends in global optimization. J. Comput. Appl. Math. 124, 209–228 (2000)

    Article  MathSciNet  Google Scholar 

  3. E. Cuevas, J. Gálvez, S. Hinojosa, O. Avalos, D. Zaldívar, M. Pérez-Cisneros, A comparison of evolutionary computation techniques for IIR model identification. J. Appl. Math. 2014 (2014)

    Article  Google Scholar 

  4. Y. Ji, K.-C. Zhang, S.-J. Qu, A deterministic global optimization algorithm. Appl. Math. Comput. 185, 382–387 (2007)

    MathSciNet  MATH  Google Scholar 

  5. J. Kennedy, R.C. Eberhart, Particle swarm optimization. Proc. IEEE Int. Conf. Neural Netw. 4, 1942–1948 (1995)

    Article  Google Scholar 

  6. J.H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, 1975)

    Google Scholar 

  7. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, 1989)

    Google Scholar 

  8. E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: a gravitational search algorithm. Inf. Sci. (NY) 179(13), 2232–2248 (2009)

    Article  Google Scholar 

  9. Ş.I. Birbil, S.-C. Fang, An electromagnetism-like mechanism for global optimization. J. Glob. Optim. 25(3), 263–282 (2003)

    Google Scholar 

  10. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  11. K.C. Tan, S.C. Chiam, A.A. Mamun, C.K. Goh, Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. Eur. J. Oper. Res. 197(2), 701–713 (2009)

    Article  Google Scholar 

  12. E. Alba, B. Dorronsoro, The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans. Evol. Comput. 9(2), 126–142 (2005)

    Article  Google Scholar 

  13. I. Paenke, Y. Jin, J. Branke, Balancing population- and individual-level adaptation in changing environments. Adapt. Behav. 17(2), 153–174 (2009)

    Article  Google Scholar 

  14. E. Cuevas, A. Echavarría, M.A. Ramírez-Ortegón, An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation. Appl. Intell. 40(2), 256–272 (2014)

    Article  Google Scholar 

  15. M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  16. E. Şahin, Swarm Robotics: From Sources of Inspiration to Domains of Application (Springer, Berlin, Heidelberg, 2005), pp. 10–20

    Book  Google Scholar 

  17. M. Duarte, J. Gomes, V. Costa, T. Rodrigues, F. Silva, V. Lobo, M.M. Marques, S.M. Oliveira, A.L. Christensen, Application of swarm robotics systems to marine environmental monitoring, in OCEANS 2016—Shanghai (2016), pp. 1–8

    Google Scholar 

  18. Y. Tan, Definition of swarm robotics characteristics of swarm robotics. J. Comput. Sci. Syst. Biol. 6(6) (2013)

    Google Scholar 

  19. F. Mondada, D. Floreano, A. Guignard, J.-L. Deneubourg, L. Gambardella, S. Nolfi, M. Dorigo, Search for Rescue: An Application for the SWARM-BOT Self-assembling Robot Concept (2002)

    Google Scholar 

  20. S. Camazine, Self-organization in Biological Systems (Princeton University Press, 2003)

    Google Scholar 

  21. C.W. Reynolds, Flocks, Herds, and Schools: A Distributed Behavioral Model, vol. 21, no. 4 (1987)

    Google Scholar 

  22. P. De Meo, D. Rosaci, G.M. Sarnè, D. Ursino, G. Terracina, EC-XAMAS: supporting e-commerce activities by an XML-based adaptive multi-agent system. Appl. Artif. Intell. 21(6), 529–562 (2007)

    Article  Google Scholar 

  23. L. Ardissono, A. Goy, G. Petrone, M. Segnan, L. Console, L. Lesmo, C. Simone, P. Torasso, Agent Technologies for the Development of Adaptive Web Stores (Springer, Berlin, Heidelberg, 2001), pp. 194–213

    Google Scholar 

  24. D. Ursino, D. Rosaci, G.M.L. Sarnè, G. Terracina, An agent-based approach for managing e-commerce activities. Int. J. Intell. Syst. 19(5), 385–416 (2004)

    Article  Google Scholar 

  25. S.M. Aynur, A.A. Dayanik, H. Hirsh, Information Valets for Intelligent Information Access (2000)

    Google Scholar 

  26. S. Howell, Y. Rezgui, J.-L. Hippolyte, B. Jayan, H. Li, Towards the next generation of smart grids: semantic and holonic multi-agent management of distributed energy resources. Renew. Sustain. Energy Rev. 77, 193–214 (2017)

    Article  Google Scholar 

  27. V.N. Coelho, M. Weiss Cohen, I.M. Coelho, N. Liu, F.G. Guimarães, Multi-agent systems applied for energy systems integration: state-of-the-art applications and trends in microgrids. Appl. Energy 187, 820–832 (2017)

    Article  Google Scholar 

  28. H.S.V.S.K. Nunna, A.M. Saklani, A. Sesetti, S. Battula, S. Doolla, D. Srinivasan, Multi-agent based demand response management system for combined operation of smart microgrids. Sustain. Energy Grids Netw. 6, 25–34 (2016)

    Article  Google Scholar 

  29. A. Anvari-Moghaddam, A. Rahimi-Kian, M.S. Mirian, J.M. Guerrero, A multi-agent based energy management solution for integrated buildings and microgrid system. Appl. Energy 203, 41–56 (2017)

    Article  Google Scholar 

  30. V. Loia, S. Tomasiello, A. Vaccaro, Using fuzzy transform in multi-agent based monitoring of smart grids. Inf. Sci. (NY) 388–389, 209–224 (2017)

    Article  Google Scholar 

  31. X. Zhang, L. Liu, G. Feng, Leader–follower consensus of time-varying nonlinear multi-agent systems. Automatica 52, 8–14 (2015)

    Article  MathSciNet  Google Scholar 

  32. X. Zhang, Q. Liu, L. Baron, E.-K. Boukas, Feedback stabilization for high order feedforward nonlinear time-delay systems. Automatica 47(5), 962–967 (2011)

    Article  MathSciNet  Google Scholar 

  33. X. Zhang, L. Baron, Q. Liu, E.-K. Boukas, Design of stabilizing controllers with a dynamic gain for feedforward nonlinear time-delay systems. IEEE Trans. Automat. Contr. 56(3), 692–697 (2011)

    Article  MathSciNet  Google Scholar 

  34. X. Zhang, G. Feng, Y. Sun, Finite-time stabilization by state feedback control for a class of time-varying nonlinear systems. Automatica 48(3), 499–504 (2012)

    Article  MathSciNet  Google Scholar 

  35. J. Alonso-Mora, T. Naegeli, R. Siegwart, P. Beardsley, Collision avoidance for aerial vehicles in multi-agent scenarios. Auton. Robots 39(1), 101–121 (2015)

    Article  Google Scholar 

  36. W. Hönig, T.K.S. Kumar, S. Koenig, L. Cohen, H. Ma, H. Xu, N. Ayanian, S. Koenig, Multi-agent path finding with kinematic constraints, in Proceedings of the 26th International Conference on Automated Planning and Scheduling (2016), p. 9

    Google Scholar 

  37. S. Shalev-Shwartz, S. Shammah, A. Shashua, Safe, multi-agent, reinforcement learning for autonomous driving. arXiv Prepr. (2016)

    Google Scholar 

  38. L. Zhao, Y. Jia, Neural network-based adaptive consensus tracking control for multi-agent systems under actuator faults. Int. J. Syst. Sci. 47(8), 1931–1942 (2016)

    Article  MathSciNet  Google Scholar 

  39. A. Nikou, J. Tumova, D.V. Dimarogonas, Cooperative task planning of multi-agent systems under timed temporal specifications, in 2016 American Control Conference (ACC) (2016), pp. 7104–7109

    Google Scholar 

  40. Z. Yang, Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. (NY) 178(15), 2985–2999 (2008)

    Article  MathSciNet  Google Scholar 

  41. N. Mladenović, P. Hansen, Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)

    Article  MathSciNet  Google Scholar 

  42. M.A. Potter, K.A. De Jong, Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol. Comput. 8(1), 1–29 (2000)

    Article  Google Scholar 

  43. F. Glover, M. Laguna, Tabu search, in Handbook of Combinatorial Optimization (Springer US, Boston, MA, 1998), pp. 2093–2229

    Chapter  Google Scholar 

  44. P. Hansen, N. Mladenović, J. Brimberg, J.A.M. Pérez, Variable Neighborhood Search (Springer, Boston, MA, 2010), pp. 61–86

    MATH  Google Scholar 

  45. G. Anescu, Further scalable test functions for multidimensional continuous optimization (2017)

    Google Scholar 

  46. M.D. Li, H. Zhao, X.W. Weng, T. Han, A novel nature-inspired algorithm for optimization: virus colony search. Adv. Eng. Softw. 92, 65–88 (2016)

    Article  Google Scholar 

  47. A. Askarzadeh, A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)

    Article  Google Scholar 

  48. R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. (1997)

    Google Scholar 

  49. D. Karaboga, An idea based on honey bee swarm for numerical optimization. Comput. Eng. Dep. Eng. Fac. Erciyes Univ. (2005)

    Google Scholar 

  50. P. Civicioglu, Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Comput. Geosci. 46, 229–247 (2012)

    Article  Google Scholar 

  51. X.-S. Yang, S. Deb, Cuckoo search via Lévy flights, in Proceedings of World Congress on Nature and Biologically Inspired Computing (NABIC’09) (2009), pp. 210–214

    Google Scholar 

  52. S. Mirjalili, S.M. Mirjalili, A. Hatamlou, Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27(2), 495–513 (2016)

    Article  Google Scholar 

  53. S. Mirjalili, Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

  54. S. Mirjalili, SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)

    Article  Google Scholar 

  55. N. Hansen, S. Kern, Evaluating the CMA evolution strategy on multimodal test functions, in Proceedings of the 8th International Conference on Parallel Problem Solving from Nature—PPSN VIII, vol. 3242/2004 (2004), pp. 282–291

    Google Scholar 

  56. J.J.Q. Yu, V.O.K. Li, A social spider algorithm for global optimization. Appl. Soft Comput. J. 30, 614–627 (2015)

    Article  Google Scholar 

  57. M. Han, C. Liu, J. Xing, An evolutionary membrane algorithm for global numerical optimization problems. Inf. Sci. (NY) 276, 219–241 (2014)

    Article  MathSciNet  Google Scholar 

  58. Z. Meng, J.S. Pan, Monkey king evolution: a new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization. Knowl.-Based Syst. 97, 144–157 (2015)

    Article  Google Scholar 

  59. X.-S. Yang, M. Karamanoglu, X. He, Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)

    Article  MathSciNet  Google Scholar 

  60. F. Wilcoxon, Individual comparisons by ranking methods. Biometrics, 80–83 (1945)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuevas, E., Gálvez, J., Avalos, O. (2020). Neighborhood Based Optimization Algorithm. In: Recent Metaheuristics Algorithms for Parameter Identification. Studies in Computational Intelligence, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-030-28917-1_7

Download citation

Publish with us

Policies and ethics