Skip to main content

Abstract

Injuries to the vagus and glossopharyngeal nerves and their branches are usually iatrogenic. In this chapter, etiologies of these injuries are reviewed, along with the mechanisms and physiology of nerve injury and recovery at the cellular level. The problems of nerve regeneration as it pertains to the recurrent laryngeal nerve, which carries both adductor and abductor fibers to the larynx, are described. Clinical implications of these injuries are reviewed, and current diagnostic procedures and principles of treatment of these problems are summarized. New treatment ideas that are currently under investigation are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosenthal LHS, Benninger MS, Deeb RH. Vocal fold immobility: a longitudinal analysis of etiology over 20 years. Laryngoscope. 2007;117(10):1864–70.

    Article  PubMed  Google Scholar 

  2. Takano S, Nito T, Tamaruya N, Kimura M, Tayama N. Single institutional analysis of trends over 45 years in etiology of vocal fold paralysis. Auris Nasus Larynx. 2012;39(6):597–600.

    Article  PubMed  Google Scholar 

  3. Spataro EA, Grindler DJ, Paniello RC. Etiology and time to presentation of unilateral vocal fold paralysis. Otolaryngol Head Neck Surg. 2014;151(2):286–94.

    Article  PubMed  Google Scholar 

  4. Hillel AD, Benninger M, Blitzer A, Crumley R, Flint P, Kashima HK, et al. Evaluation and management of bilateral vocal cord immobility. Otolaryngol Head Neck Surg. 1999;121(6):760–5.

    Article  CAS  PubMed  Google Scholar 

  5. Bauer E, Paniello RC. Data compiled from database at Washington University St. Louis MO, USA. 2019.

    Google Scholar 

  6. Curry AL, Young WF. Preoperative laryngoscopic examination in patients undergoing repeat anterior cervical discectomy and fusion. Int J Spine Surg. 2013;7:e81–3.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Farrag TY, Samlan RA, Lin FR, Tufano RP. The utility of evaluating true vocal fold motion before thyroid surgery. Laryngoscope. 2006;116(2):235–8.

    Article  PubMed  Google Scholar 

  8. Paniello RC, Martin-Bredahl KJ, Henkener LJ, Riew KD. Preoperative laryngeal nerve screening for revision anterior cervical spine procedures. Ann Otol Rhinol Laryngol. 2008;117(8):594–7.

    Article  PubMed  Google Scholar 

  9. Randolph GW, Kamani D. The importance of preoperative laryngoscopy in patients undergoing thyroidectomy: voice, vocal cord function, and the preoperative detection of invasive thyroid malignancy. Surgery. 2006;139(3):357–62.

    Article  PubMed  Google Scholar 

  10. Steurer M, Passler C, Denk DM, Schneider B, Niederle B, Bigenzahn W. Advantages of recurrent laryngeal nerve identification in thyroidectomy and parathyroidectomy and the importance of preoperative and postoperative laryngoscopic examination in more than 1000 nerves at risk. Laryngoscope. 2002;112(1):124–33.

    Article  PubMed  Google Scholar 

  11. Caroline M, Joglekar SS, Mandel SM, Sataloff RT, Heman-Ackah YD. The predictors of postoperative laryngeal nerve paresis in patients undergoing thyroid surgery: a pilot study. J Voice. 2012;26(2):262–6.

    Article  PubMed  Google Scholar 

  12. Naytah M, Ibrahim I, da Silva S. Importance of incorporating intraoperative neuromonitoring of the external branch of the superior laryngeal nerve in thyroidectomy: a review and meta-analysis study. Head Neck. 2019;41(6):2034–41.

    Article  PubMed  Google Scholar 

  13. Buchholz DW. Oropharyngeal dysphagia due to iatrogenic neurological dysfunction. Dysphagia. 1995;10(4):248–54.

    Article  CAS  PubMed  Google Scholar 

  14. Sasaki CT, Kim YH, Sims HS, Czibulka A. Motor innervation of the human cricopharyngeus muscle. Ann Otol Rhinol Laryngol. 1999;108(12):1132–9.

    Article  CAS  PubMed  Google Scholar 

  15. Halum SL, Merati AL, Kulpa JI, Danielson SK, Jaradeh SS, Toohill RJ. Laryngoscope. 2003;113(6):981–4.

    Article  PubMed  Google Scholar 

  16. Sunderland S. Nerves and nerve injuries, 2nd ed. Foreword by Walshe F. Edinburgh. New York: Churchill Livingstone; 1978.

    Google Scholar 

  17. Tirelli G, Camilot D, Bonini P, Del Piero GC, Biasotto M, Quatela E. Harmonic scalpel and electrothermal bipolar vessel sealing system in head and neck surgery: a prospective study on tissue heating and histological damage on nerves. Ann Otol Rhinol Laryngol. 2015;124(11):852–8.

    Article  PubMed  Google Scholar 

  18. Garas G, Okabayashi K, Ashrafian H, Shetty K, Palazzo F, Tolley N, Darzi A, Athanasiou T, Zacharakis E. Which hemostatic device in thyroid surgery? A network meta-analysis of surgical technologies. Thyroid. 2013;23(9):1138–50.

    Article  PubMed  Google Scholar 

  19. Yang X, Cao J, Yan Y, Liu F, Li T, Han L, Ye C, Zheng S, Wang S, Ye Y, Jiang K. Comparison of the safety of electrotome, Harmonic scalpel, and LigaSure for management of thyroid surgery. Head Neck. 2017;39(6):1078–85.

    Article  PubMed  Google Scholar 

  20. Hammad AY, Deniwar A, Al-Qurayshi Z, Mohamed HE, Rizwan A, Kandil E. A prospective study comparing the efficacy and surgical outcomes of harmonic focus scalpel versus ligasure small jaw in thyroid and parathyroid surgery. Surg Innov. 2016;23(5):486–9.

    Article  PubMed  Google Scholar 

  21. De Palma M, Rosato L, Zingone F, Orlando G, Antonino A, Vitale M, Puzziello A. Post-thyroidectomy complications. The role of the device: bipolar vs ultrasonic device: collection of data from 1,846 consecutive patients undergoing thyroidectomy. Am J Surg. 2016;212(1):116–21.

    Article  PubMed  Google Scholar 

  22. Dellon AL, Mackinnon SE. Basic scientific and clinical applications of peripheral nerve regeneration. Surg Annu. 1988;20:59–100.

    CAS  PubMed  Google Scholar 

  23. Caillaud M, Richard L, Vallat JM, Desmoulière A, Billet F. Peripheral nerve regeneration and intraneural revascularization. Neural Regen Res. 2019;14(1):24–33.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kerschensteiner M, Schwab ME, Lichtman JW, Misgeld T. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med. 2005;11(5):572–7.

    Article  CAS  PubMed  Google Scholar 

  25. Eddleman CS, Ballinger ML, Smyers ME, Fishman HM, Bittner GD. Endocytotic formation of vesicles and other membranous structures induced by Ca2+ and axolemmal injury. J Neurosci. 1998;18(11):4029–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang JT, Medress ZA, Barres BA. Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol. 2012;196(1):7–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gacek RR, Malmgren LT, Lyon MJ. Localization of adductor and abductor motor nerve fibers to the larynx. Ann Otol Rhinol Laryngol. 1977;86(6 Pt 1):771–6.

    CAS  PubMed  Google Scholar 

  28. Flint PW, Downs DH, Coltrera MD. Laryngeal synkinesis following reinnervation in the rat. Neuroanatomic and physiologic study using retrograde fluorescent tracers and electromyography. Ann Otol Rhinol Laryngol. 1991;100(10):797–806.

    Article  CAS  PubMed  Google Scholar 

  29. Paniello RC, West SE. Laryngeal adductory pressure as a measure of post-reinnervation synkinesis. Ann Otol Rhinol Laryngol. 2000;109(5):447–51.

    Article  CAS  PubMed  Google Scholar 

  30. Paniello RC, Rich JT, Debnath NL. Laryngeal adductor function in experimental models of recurrent laryngeal nerve injury. Laryngoscope. 2015;125(2):E67–72.

    Article  PubMed  Google Scholar 

  31. Paniello RC. Synkinesis following recurrent laryngeal nerve injury: a computer simulation. Laryngoscope. 2016;126(7):1600–5.

    Article  PubMed  Google Scholar 

  32. Ramon y Cajal S. In: May RM, editor. Degeneration and regeneration of the nervous system. New York: Oxford University Press; 1928.

    Google Scholar 

  33. Ghergherehchi CL, Bittner GD, Hastings RL, Mikesh M, Riley DC, Trevino RC, et al. Effects of extracellular calcium and surgical techniques on restoration of axonal continuity by polyethylene glycol fusion following complete cut or crush severance of rat sciatic nerves. J Neurosci Res. 2016;94(3):231–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Paniello RC, Park AM, Bhatt N, Al-Lozi M. Recurrent laryngeal nerve recovery patterns assessed by serial electromyography. Laryngoscope. 2016;126(3):651–6.

    Article  PubMed  Google Scholar 

  35. Wu YZ, Crumley RL, Armstrong WB, Caiozzo VJ. New perspectives about human laryngeal muscle: single-fiber analyses and interspecies comparisons. Arch Otolaryngol Head Neck Surg. 2000;126(7):857–64.

    Article  CAS  PubMed  Google Scholar 

  36. Rhee HS, Hoh JF. Immunohistochemical analysis of myosin heavy chain expression in laryngeal muscles of the rabbit, cat, and baboon. J Histochem Cytochem. 2008;56(10):929–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hoh JF. Laryngeal muscle fibre types. Acta Physiol Scand. 2005;183(2):133–49.

    Article  CAS  PubMed  Google Scholar 

  38. Li ZB, Lehar M, Nakagawa H, Hoh JF, Flint PW. Differential expression of myosin heavy chain isoforms between abductor and adductor muscles in the human larynx. Otolaryngol Head Neck Surg. 2004;130(2):217–22.

    Article  PubMed  Google Scholar 

  39. Qiu X, Chen D, Li M, Gao Y, Liu F, Zheng H, Chen S. Transition of myosin heavy chain isoforms in human laryngeal abductors following denervation. Eur Arch Otorhinolaryngol. 2015;272(10):2915–23.

    Article  PubMed  Google Scholar 

  40. Shiotani A, Westra WH, Flint PW. Myosin heavy chain composition in human laryngeal muscles. Laryngoscope. 1999;109(9):1521–4.

    Article  CAS  PubMed  Google Scholar 

  41. Toniolo L, Macchi V, Porzionato A, Paoli A, Marchese-Ragona R, De Caro R, Reggiani C. Myosin heavy chain isoforms in human laryngeal muscles: an expression study based on gel electrophoresis. Int J Mol Med. 2008;22(3):375–9.

    CAS  PubMed  Google Scholar 

  42. Asanau A, Timoshenko AP, Prades JM, Galusca B, Martin C, Féasson L. Posterior cricoarytenoid bellies: relationship between their function and histology. J Voice. 2011;25:e67–73.

    Article  PubMed  Google Scholar 

  43. Horton MJ, Rosen C, Close JM, Sciote JJ. Quantification of myosin heavy chain RNA in human laryngeal muscles: differential expression in the vertical and horizontal posterior cricoarytenoid and thyroarytenoid. Laryngoscope. 2008;118(3):472–7.

    Article  CAS  PubMed  Google Scholar 

  44. Bergrin M, Bicer S, Lucas CA, Reiser PJ. Three-dimensional compartmentalization of myosin heavy chain and myosin light chain isoforms in dog thyroarytenoid muscle. Am J Physiol Cell Physiol. 2006;290(5):C1446–58.

    Article  CAS  PubMed  Google Scholar 

  45. Buller AJ, Eccles JC, Eccles RM. Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J Physiol. 1960;150:417–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rhee HS, Lucas CA, Hoh JF. Fiber types in rat laryngeal muscles and their transformations after denervation and reinnervation. J Histochem Cytochem. 2004;52(5):581–90.

    Article  CAS  PubMed  Google Scholar 

  47. Shiotani A, Nakagawa H, Flint PW. Modulation of myosin heavy chains in rat laryngeal muscle. Laryngoscope. 2001;111(3):472–7.

    Article  CAS  PubMed  Google Scholar 

  48. Kingham PJ, Birchall MA, Burt R, Jones A, Terenghi G. Reinnervation of laryngeal muscles: a study of changes in myosin heavy chain expression. Muscle Nerve. 2005;32(6):761–6.

    Article  CAS  PubMed  Google Scholar 

  49. Paniello RC, Lee P, West SE. Laryngeal reinnervation with the hypoglossal nerve. I. Physiology, histochemistry, electromyography, and retrograde labeling in the canine model. Ann Otol Rhinol Laryngol. 2001;110(6):532–42.

    Article  CAS  PubMed  Google Scholar 

  50. Shiotani A, Flint PW. Myosin heavy chain composition in rat laryngeal muscles after denervation. Laryngoscope. 1998;108(8 Pt 1):1225–9.

    Article  CAS  PubMed  Google Scholar 

  51. DelGaudio JM, Sciote JJ. Changes in myosin expression in denervated laryngeal muscle. Ann Otol Rhinol Laryngol. 1997;106(12):1076–81.

    Article  CAS  PubMed  Google Scholar 

  52. Kano S, Horowitz JB, Sasaki CT. Posterior cricoarytenoid muscle denervation. Arch Otolaryngol Head Neck Surg. 1991;117(9):1019–20.

    Article  CAS  PubMed  Google Scholar 

  53. Miyamaru S, Kumai Y, Ito T, Yumoto E. Effects of long-term denervation on the rat thyroarytenoid muscle. Laryngoscope. 2008;118(7):1318–23.

    Article  PubMed  Google Scholar 

  54. Johns MM, Urbanchek M, Chepeha DB, Kuzon WM Jr, Hogikyan ND. Thyroarytenoid muscle maintains normal contractile force in chronic vocal fold immobility. Laryngoscope. 2001;111(12):2152–6.

    Article  CAS  PubMed  Google Scholar 

  55. Shindo ML, Herzon GD, Hanson DG, Cain DJ, Sahgal V. Effects of denervation on laryngeal muscles: a canine model. Laryngoscope. 1992;102(6):663–9.

    Article  CAS  PubMed  Google Scholar 

  56. Olson DE, Goding GS, Michael DD. Acoustic and perceptual evaluation of laryngeal reinnervation by ansa cervicalis transfer. Laryngoscope. 1998;108(12):1767–72.

    Article  CAS  PubMed  Google Scholar 

  57. Li M, Chen S, Wang W, Chen D, Zhu M, Liu F, Zhang C, Li Y, Zheng H. Effect of duration of denervation on outcomes of ansa-recurrent laryngeal nerve reinnervation. Laryngoscope. 2014;124(8):1900–5.

    Article  PubMed  Google Scholar 

  58. Wang B, Yuan J, Xu J, Xie J, Wang G, Dong P. Neurotrophin expression and laryngeal muscle pathophysiology following recurrent laryngeal nerve transection. Mol Med Rep. 2016;13(2):1234–42.

    Article  CAS  PubMed  Google Scholar 

  59. Vega-Cordova X, Cosenza NM, Helfert RH, Woodson GE. Neurotrophin expression of laryngeal muscles in response to recurrent laryngeal nerve transection. Laryngoscope. 2010;120(8):1591–6.

    Article  CAS  PubMed  Google Scholar 

  60. Halum SL, Bijangi-Vishehsaraei K, Saadatzadeh MR, McRae BR. Differences in laryngeal neurotrophic factor gene expression after recurrent laryngeal nerve and vagus nerve injuries. Ann Otol Rhinol Laryngol. 2013;122(10):653–63.

    Article  PubMed  Google Scholar 

  61. Hernandez-Morato I, Sharma S, Pitman MJ. Changes in neurotrophic factors of adult rat laryngeal muscles during nerve regeneration. Neuroscience. 2016;333:44–53.

    Article  CAS  PubMed  Google Scholar 

  62. Halum SL, McRae B, Bijangi-Vishehsaraei K, Hiatt K. Neurotrophic factor-secreting autologous muscle stem cell therapy for the treatment of laryngeal denervation injury. Laryngoscope. 2012;122(11):2482–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. De Bodt MS, Clement G, Wuyts FL, Borghs C, Van Lierde KM. The impact of phonation mode and vocal technique on vocal fold closure in young females with normal voice quality. J Voice. 2012;26(6):818.

    PubMed  Google Scholar 

  64. Dionigi G, Boni L, Rovera F, Rausei S, Castelnuovo P, Dionigi R. Postoperative laryngoscopy in thyroid surgery: proper timing to detect recurrent laryngeal nerve injury. Langenbeck's Arch Surg. 2010;395(4):327–31.

    Article  Google Scholar 

  65. Woo P, Isseroff TF, Parasher A, Richards A, Sivak M. Laryngeal electromyographic findings in patients with vocal fold motion asymmetry. Laryngoscope. 2016;126(8):E273–7.

    Article  PubMed  Google Scholar 

  66. Simpson CB, May LS, Green JK, Eller RL, Jackson CE. Vibratory asymmetry in mobile vocal folds: is it predictive of vocal fold paresis? Ann Otol Rhinol Laryngol. 2011;120(4):239–42.

    Article  PubMed  Google Scholar 

  67. Estes C, Sadoughi B, Mauer E, Christos P, Sulica L. Laryngoscopic and stroboscopic signs in the diagnosis of vocal fold paresis. Laryngoscope. 2017;127(9):2100–5.

    Article  PubMed  Google Scholar 

  68. Madden LL, Rosen CA. Evaluation of vocal fold motion abnormalities: are we all seeing the same thing? J Voice. 2017;31(1):72–7.

    Article  PubMed  Google Scholar 

  69. Munin MC, Heman-Ackah YD, Rosen CA, Sulica L, Maronian N, Mandel S, et al. Consensus statement: using laryngeal electromyography for the diagnosis and treatment of vocal cord paralysis. Muscle Nerve. 2016;53(6):850–5.

    Article  PubMed  Google Scholar 

  70. Bracken DJ, Ornelas G, Coleman TP, Weissbrod PA. High-density surface electromyography: a visualization method of laryngeal muscle activity. Laryngoscope. 2019; https://doi.org/10.1002/lary.27784.[Epub ahead of print].

  71. Halum SL, Patel N, Smith TL, Jaradeh S, Toohill RJ, Merati AL. Laryngeal electromyography for adult unilateral vocal fold immobility: a survey of the American Broncho-Esophagological Association. Ann Otol Rhinol Laryngol. 2005;114(6):425–8.

    Article  PubMed  Google Scholar 

  72. Smith LJ, Rosen CA, Niyonkuru C, Munin MC. Quantitative electromyography improves prediction in vocal fold paralysis. Laryngoscope. 2012;122(4):854–9.

    Article  PubMed  Google Scholar 

  73. Francis DO, McKiever ME, Garrett CG, Jacobson B, Penson DF. Assessment of patient experience with unilateral vocal fold immobility: a preliminary study. J Voice. 2014;28(5):636–43.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ballard DP, Abramowitz J, Sukato DC, Bentsianov B, Rosenfeld RM. Systematic review of voice outcomes for injection laryngoplasty performed under local vs general anesthesia. Otolaryngol Head Neck Surg. 2018;159(4):608–14.

    Article  PubMed  Google Scholar 

  75. Bertroche JT, Radder M, Kallogjeri D, Paniello RC, Bradley JP. Patient-defined duration of benefit from Juvederm (hyaluronic acid) used in injection laryngoplasty. Laryngoscope. 2019; https://doi.org/10.1002/lary.27842. [Epub ahead of print].

  76. Vila PM, Bhatt NK, Paniello RC. Early-injection laryngoplasty for unilateral vocal fold paralysis decreases the risk of permanent medialization surgery: a systematic review and meta-analysis. Laryngoscope. 2018;128(4):935–40.

    Article  PubMed  Google Scholar 

  77. Isshiki N, Morita H, Okamura H, Hiramoto M. Thyroplasty as a new phonosurgical technique. Acta Otolaryngol. 1974;78(5–6):451–7.

    Article  CAS  PubMed  Google Scholar 

  78. Parker NP, Barbu AM, Hillman RE, Zeitels SM, Burns JA. Revision transcervical medialization laryngoplasty for unilateral vocal fold paralysis. Otolaryngol Head Neck Surg. 2015;153(4):593–8.

    Article  PubMed  Google Scholar 

  79. Isshiki N, Tanabe M, Sawada M. Arytenoid adduction for unilateral vocal cord paralysis. Arch Otolaryngol. 1978;104(10):555–8.

    Article  CAS  PubMed  Google Scholar 

  80. Zimmermann TM, Orbelo DM, Pittelko RL, Youssef SJ, Lohse CM, Ekbom DC. Voice outcomes following medialization laryngoplasty with and without arytenoid adduction. Laryngoscope. 2018; https://doi.org/10.1002/lary.27684. [Epub ahead of print].

  81. Crumley RL, Izdebski K. Voice quality following laryngeal reinnervation by ansa hypoglossi transfer. Laryngoscope. 1986;96(6):611–6.

    Article  CAS  PubMed  Google Scholar 

  82. Paniello RC, Edgar JD, Kallogjeri D, Piccirillo JF. Medialization versus reinnervation for unilateral vocal fold paralysis: a multicenter randomized clinical trial. Laryngoscope. 2011;121(10):2172–9.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kwak PE, Tritter AG, Donovan DT, Ongkasuwan J. Long-term voice outcomes of early thyroplasty for unilateral vocal fold paralysis following aortic arch surgery. Ann Otol Rhinol Laryngol. 2016;125(7):559–63.

    Article  PubMed  Google Scholar 

  84. Ejnell H, Mansson I, Hallén O, Bake B, Stenborg R, Lindström J. A simple operation for bilateral vocal cord paralysis. Laryngoscope. 1984;94(7):954–8.

    Article  CAS  PubMed  Google Scholar 

  85. Dennis DP, Kashima H. Carbon dioxide laser posterior cordectomy for treatment of bilateral vocal cord paralysis. Ann Otol Rhinol Laryngol. 1989;98(12 Pt 1):930–4.

    Article  CAS  PubMed  Google Scholar 

  86. Crumley RL. Endoscopic laser medial arytenoidectomy for airway management in bilateral laryngeal paralysis. Ann Otol Rhinol Laryngol. 1993;102(2):81–4.

    Article  CAS  PubMed  Google Scholar 

  87. Zealear DL, Billante CR, Courey MS, Netterville JL, Paniello RC, Sanders I, et al. Reanimation of the paralyzed human larynx with an implantable electrical stimulation device. Laryngoscope. 2003;113(7):1149–56.

    Article  PubMed  Google Scholar 

  88. Li Y, Pearce EC, Mainthia R, Athavale SM, Dang J, Ashmead DH, et al. Comparison of ventilation and voice outcomes between unilateral laryngeal pacing and unilateral cordotomy for the treatment of bilateral vocal fold paralysis. ORL J Otorhinolaryngol Relat Spec. 2013;75(2):68–73.

    Article  PubMed  Google Scholar 

  89. Marina MB, Marie JP, Birchall MA. Laryngeal reinnervation for bilateral vocal fold paralysis. Curr Opin Otolaryngol Head Neck Surg. 2011;19(6):434–8.

    Article  PubMed  Google Scholar 

  90. Li Y, Garrett G, Zealear D. Current treatment options for bilateral vocal fold paralysis: a state-of-the-art review. Clin Exp Otorhinolaryngol. 2017;10(3):203–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mattsson P, Björck G, Remahl S, Bäckdahl M, Hamberger B, Hydman J, Svensson M. Nimodipine and microsurgery induced recovery of the vocal cord after recurrent laryngeal nerve resection. Laryngoscope. 2005;115(10):1863–5.

    Article  CAS  PubMed  Google Scholar 

  92. Hydman J, Remahl S, Björck G, Svensson M, Mattsson P. Nimodipine improves reinnervation and neuromuscular function after injury to the recurrent laryngeal nerve in the rat. Ann Otol Rhinol Laryngol. 2007;116(8):623–30.

    Article  PubMed  Google Scholar 

  93. Nishimoto K, Kumai Y, Minoda R, Yumoto E. Nimodipine accelerates reinnervation of denervated rat thyroarytenoid muscle following nerve-muscle pedicle implantation. Laryngoscope. 2012;122(3):606–13.

    Article  CAS  PubMed  Google Scholar 

  94. Rosen CA, Smith L, Young V, Krishna P, Muldoon MF, Munin MC. Prospective investigation of nimodipine for acute vocal fold paralysis. Muscle Nerve. 2014;50(1):114–8.

    Article  CAS  PubMed  Google Scholar 

  95. Mattsson P, Frostell A, Björck G, Persson JKE, Hakim R, Zedenius J, Svensson M. Recovery of voice after reconstruction of the recurrent laryngeal nerve and adjuvant nimodipine. World J Surg. 2018;42(3):632–8.

    Article  CAS  PubMed  Google Scholar 

  96. Halum SL, Naidu M, Delo DM, Atala A, Hingtgen CM. Injection of autologous muscle stem cells (myoblasts) for the treatment of vocal fold paralysis: a pilot study. Laryngoscope. 2007;117(5):917–22.

    Article  PubMed  Google Scholar 

  97. Paniello RC, Brookes S, Bhatt NK, Bijangi-Vishehsaraei K, Zhang H, Halum S. Improved adductor function after canine recurrent laryngeal nerve injury and repair using muscle progenitor cells. Laryngoscope. 2018;128(7):E241–6.

    Article  PubMed  Google Scholar 

  98. Li Y, Xu W, Cheng LY. Adipose-derived mesenchymal stem cells accelerate nerve regeneration and functional recovery in a rat model of recurrent laryngeal nerve injury. Neural Regen Res. 2017;12(9):1544–50.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Paniello RC. Vocal fold paralysis: improved adductor recovery by vincristine blockade of posterior cricoarytenoid. Laryngoscope. 2015;125(3):655–60.

    Article  CAS  PubMed  Google Scholar 

  100. Park AM, Dhanda Patil R, Paniello RC. Prevention of post-traumatic reinnervation with microtubule inhibitors. Laryngoscope. 2015;125(10):E333–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Paniello RC, Park AM. Effect on laryngeal adductor function of vincristine block of posterior cricoarytenoid muscle 3 to 5 months after recurrent laryngeal nerve injury. Ann Otol Rhinol Laryngol. 2015;124(6):484–9.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Paniello RC, Bhatt NK, Chernock R. Toxicity trial of canine posterior cricoarytenoid intramuscular vincristine injections. Laryngoscope. 2018;128(7):E247–50.

    Article  CAS  PubMed  Google Scholar 

  103. Kaneko M, Tsuji T, Kishimoto Y, Sugiyama Y, Nakamura T, Hirano S. Regenerative effects of basic fibroblast growth factor on restoration of thyroarytenoid muscle atrophy caused by recurrent laryngeal nerve transection. J Voice. 2018;32(6):645–51.

    Article  PubMed  Google Scholar 

  104. Goto T, Ueha R, Sato T, Fujimaki Y, Nito T, Yamasoba T. Single, high-dose local injection of bFGF improves thyroarytenoid muscle atrophy after paralysis. Laryngoscope. 2019; https://doi.org/10.1002/lary.27887. [Epub ahead of print].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randal C. Paniello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paniello, R.C. (2020). Iatrogenic Injury. In: Weissbrod, P., Francis, D. (eds) Neurologic and Neurodegenerative Diseases of the Larynx. Springer, Cham. https://doi.org/10.1007/978-3-030-28852-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28852-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28851-8

  • Online ISBN: 978-3-030-28852-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics