Skip to main content

Effective Training in Neonatal Medicine

  • Chapter
  • First Online:
Emerging Topics and Controversies in Neonatology
  • 733 Accesses

Abstract

Training in postgraduate medicine faces many challenges, including understaffed and overcrowded environments (Wiese et al., Syst Rev 6(1):10, 2017), reduced hours for training (Asch et al., N Engl J Med 376(18):1704–6, 2017) and more recently in the UK, concern regarding how reflective education might be used inappropriately (Dyer and Cohen, BMJ 360:k572, 2018).

Nonetheless, postgraduate clinical education remains both exciting and rewarding. It is these challenges that drives trainers to deliver the most effective training and supervision for their learners.

Over the course of this chapter, we will aim to summarise some of the latest advances in neonatal training, as well as provide practical insights on how best to apply these in clinical practice. We will explore simulation training, particularly focusing on the role of ‘in situ’ simulation training delivered at the ‘point of care’ and recent developments in debriefing techniques, both for simulation sessions and for real clinical situations.

We will consider the role of technology, how to use educational principles to deliver effective sessions and reflect on how some of the newer technologies may enhance learning and their application in neonatal education. We will explore developments in practical skills teaching, particularly the use of rapid cycle deliberate practice and will look at newer developments in technology enhanced learning.

It is important to think about the underlying educational principles when designing neonatal teaching sessions (Sandars et al., Med Teach 37(11):1039–42, 2015) Simulation technology is a tool to enable us to deliver effective learning and it is important to choose the ‘right tool for the job.’ It is unnecessary to use the latest high-fidelity mannequin to simulate breaking bad news to a parent. A good way to approach a session is to ask—‘what are the learning objectives?’ and ‘is this the best teaching method to achieve those objectives?’

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiese A, Kilty C, Bergin C, Flood P, Fu N, Horgan M, Higgins A, Maher B, O’Kane G, Prihodova L, Slattery D. Protocol for a realist review of workplace learning in postgraduate medical education and training. Syst Rev. 2017;6(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Asch DA, Bilimoria KY, Desai SV. Resident duty hours and medical education policy—raising the evidence bar. N Engl J Med. 2017;376(18):1704–6.

    Article  PubMed  Google Scholar 

  3. Dyer C, Cohen D. How should doctors use e-portfolios in the wake of the Bawa-Garba case? BMJ. 2018;360:k572.

    Article  PubMed  Google Scholar 

  4. Sandars J, Patel RS, Goh PS, Kokatailo PK, Lafferty N. The importance of educational theories for facilitating learning when using technology in medical education. Med Teach. 2015;37(11):1039–42.

    Article  PubMed  Google Scholar 

  5. Ker J, Bradley P. Simulation in medical education. In: Understanding medical education: evidence, theory and practice. 2013. p. 175–92.

    Chapter  Google Scholar 

  6. Okuda Y, Bryson EO, DeMaria S Jr, Jacobson L, Quinones J, Shen B, Levine AI. The utility of simulation in medical education: what is the evidence? Mt Sinai J Med. 2009;76(4):330–43.

    Article  PubMed  Google Scholar 

  7. Gaba DM. The future vision of simulation in health care. Qual Saf Health Care. 2004;13(Suppl 1):i2–i10.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barry Issenberg S, McGaghie WC, Petrusa ER, Lee Gordon D, Scalese RJ. Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review. Med Teach. 2005;27(1):10–28.

    Article  PubMed  Google Scholar 

  9. Good ML. Patient simulation for training basic and advanced clinical skills. Med Educ. 2003;37:14–21.

    Article  PubMed  Google Scholar 

  10. Wong AH, Tiyyagura GK, Dodington JM, Hawkins B, Hersey D, Auerbach MA. Facilitating tough conversations: using an innovative simulation-primed qualitative inquiry in pediatric research. Acad Pediatr. 2017;17:807–13.

    Article  PubMed  Google Scholar 

  11. Patterson MD, Blike GT, Nadkarni VM. In situ simulation: challenges and results. In: Advances in patient safety: new directions and alternative approaches (Vol. 3: performance and tools). Agency for Healthcare Research and Quality (US). 2008.

    Google Scholar 

  12. Sørensen JL, Van der Vleuten C, Lindschou J, Gluud C, Østergaard D, LeBlanc V, Johansen M, Ekelund K, Albrechtsen CK, Pedersen BW, Kjærgaard H. ‘In situ simulation ‘versus’ off site simulation’ in obstetric emergencies and their effect on knowledge, safety attitudes, team performance, stress, and motivation: study protocol for a randomized controlled trial. Trials. 2013;14(1):220.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schofield L, Welfare E, Mercer S. In-situ simulation. Trauma. 2017. https://doi.org/10.1177/1460408617711729.

    Article  Google Scholar 

  14. Durning SJ, Artino AR. Situativity theory: a perspective on how participants and the environment can interact: AMEE Guide no. 52. Med Teach. 2011;33(3):188–99.

    Article  PubMed  Google Scholar 

  15. Norman G, Dore K, Grierson L. The minimal relationship between simulation fidelity and transfer of learning. Med Educ. 2012;46(7):636–47.

    Article  PubMed  Google Scholar 

  16. Schepers J, de Jong A, Wetzels M, de Ruyter K. Psychological safety and social support in groupware adoption: a multi-level assessment in education. Comput Educ. 2008;51(2):757–75.

    Article  Google Scholar 

  17. Rudolph JW, Raemer DB, Simon R. Establishing a safe container for learning in simulation: the role of the presimulation briefing. Simul Healthc. 2014;9(6):339–49.

    Article  PubMed  Google Scholar 

  18. Mercer SJ, Wimlett S. In-situ simulation. Bull R Coll Anaesthet. 2012;76:28–30.

    Google Scholar 

  19. Maran NJ, Glavin RJ. Low-to high-fidelity simulation—a continuum of medical education? Med Educ. 2003;37:22–8.

    Article  PubMed  Google Scholar 

  20. Curran V, Fleet L, White S, Bessell C, Deshpandey A, Drover A, Hayward M, Valcour J. A randomized controlled study of manikin simulator fidelity on neonatal resuscitation program learning outcomes. Adv Health Sci Educ. 2015;20(1):205–18.

    Article  Google Scholar 

  21. Brydges R, Carnahan H, Rose D, Rose L, Dubrowski A. Coordinating progressive levels of simulation fidelity to maximize educational benefit. Acad Med. 2010;85(5):806–12.

    Article  PubMed  Google Scholar 

  22. Finan E, Bismilla Z, Campbell C, Leblanc V, Jefferies A, Whyte HE. Improved procedural performance following a simulation training session may not be transferable to the clinical environment. J Perinatol. 2012;32(7):539–44.

    Article  CAS  PubMed  Google Scholar 

  23. Thomas EJ, Williams AL, Reichman EF, Lasky RE, Crandell S, Taggart WR. Team training in the neonatal resuscitation program for interns: teamwork and quality of resuscitations. Pediatrics. 2010;125(3):539–46.

    Article  PubMed  Google Scholar 

  24. Ericsson KA, Krampe RT, Tesch-Römer C. The role of deliberate practice in the acquisition of expert performance. Psychol Rev. 1993;100(3):363–406.

    Article  Google Scholar 

  25. Ericsson KA, Prietula MJ, Cokely ET. The making of an expert. Harv Bus Rev. 2007;85(7/8):114.

    PubMed  Google Scholar 

  26. Hunt EA, Duval-Arnould JM, Nelson-McMillan KL, Bradshaw JH, Diener-West M, Perretta JS, Shilkofski NA. Pediatric resident resuscitation skills improve after “rapid cycle deliberate practice” training. Resuscitation. 2014;85(7):945–51.

    Article  PubMed  Google Scholar 

  27. Ericsson KA. Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Acad Med. 2004;79(10):S70–81.

    Article  PubMed  Google Scholar 

  28. Sawyer T, Sierocka-Castaneda A, Chan D, Berg B, Lustik M, Thompson M. Deliberate practice using simulation improves neonatal resuscitation performance. Simul Healthc. 2011;6(6):327–36.

    Article  PubMed  Google Scholar 

  29. Catchpole KR, De Leval MR, Mcewan A, Pigott N, Elliott MJ, Mcquillan A, Macdonald C, Goldman AJ. Patient handover from surgery to intensive care: using Formula 1 pit-stop and aviation models to improve safety and quality. Pediatr Anesth. 2007;17(5):470–8.

    Article  Google Scholar 

  30. Taras J, Everett T. Rapid cycle deliberate practice in medical education—a systematic review. Cureus. 2017;9(4):e1180.

    PubMed  PubMed Central  Google Scholar 

  31. Rapid cycle deliberate practice compared with immersive simulation and standard debriefing for neonatal simulation-based education. J Paediatr Child Health. 2017;53:45–5. https://doi.org/10.1111/jpc.13494_128.

  32. Levett-Jones T, Lapkin S. A systematic review of the effectiveness of simulation debriefing in health professional education. Nurse Educ Today. 2014;34(6):e58–63.

    Article  PubMed  Google Scholar 

  33. Grant VJ, Robinson T, Catena H, Eppich W, Cheng A. Difficult debriefing situations: a toolbox for simulation educators. Med Teach. 2018;40(7):703–12.

    Article  CAS  PubMed  Google Scholar 

  34. Jewkes F, Phillips B. Resuscitation training of paediatricians. Arch Dis Child. 2003;88(2):118–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eppich W, Cheng A. Promoting Excellence and Reflective Learning in Simulation (PEARLS): development and rationale for a blended approach to health care simulation debriefing. Simul Healthc. 2015;10(2):106–15.

    Article  PubMed  Google Scholar 

  36. Rudolph JW, Simon R, Dufresne RL, Raemer DB. There is no such thing as non-judgmental debriefing: a theory and method for debriefing with good judgment. Simul Healthc. 2006;1:49–55.

    Article  PubMed  Google Scholar 

  37. Pendleton D. The consultation: an approach to learning and teaching (Oxford General Practice Series). 1984.

    Google Scholar 

  38. Wood D. Formative assessment. In: Swanwick T, editor. Understanding medical education: evidence, theory and practice. 2nd ed. Chichester: Wiley-Blackwell; 2014.

    Google Scholar 

  39. Gardner R. Introduction to debriefing. In: Seminars in perinatology. Vol. 37, No. 3. WB Saunders; 2013. p. 166–74.

    Google Scholar 

  40. Fanning RM, Gaba DM. The role of debriefing in simulation-based learning. Simul Healthc. 2007;2(2):115–25.

    Article  PubMed  Google Scholar 

  41. Chronister C, Brown D. Comparison of simulation debriefing methods. Clin Simul Nurs. 2012;8(7):e281–8.

    Article  Google Scholar 

  42. Lindon-Morris E, Laidlaw A. Anxiety and self-awareness in video feedback. Clin Teach. 2014;11(3):174–8.

    Article  PubMed  Google Scholar 

  43. Tannenbaum SI, Cerasoli CP. Do team and individual debriefs enhance performance? A meta-analysis. Hum Factors. 2013;55(1):231–45.

    Article  PubMed  Google Scholar 

  44. Phrampus PE, O’Donnell JM. Debriefing using a structured and supported approach. In: The comprehensive textbook of healthcare simulation. New York: Springer; 2013. p. 73–84.

    Chapter  Google Scholar 

  45. Eppich WJ, Mullan PC, Brett-Fleegler M, Cheng A. “Let’s talk about it”: translating lessons from health care simulation to clinical event debriefings and coaching conversations. Clin Pediatr Emerg Med. 2016;17(3):200–11.

    Article  Google Scholar 

  46. Shore H. After compression, time for decompression: debriefing after significant clinical events. Infant. 2014;10(4):117–9.

    Google Scholar 

  47. General Medical Council (Great Britain). Tomorrow’s doctors: outcomes and standards for undergraduate medical education. GMC. 2009.

    Google Scholar 

  48. https://www.imperial.ac.uk/patient-safety-translational-research-centre/education/training-materials-for-use-in-research-and-clinical-practice/the-observational-structured/. Accessed 1 Sept 2018.

  49. https://harvardmedsim.org/debriefing-assessment-for-simulation-in-healthcare-dash/. Accessed 1 Sept 2018.

  50. Simon R, Raemer DB, Rudolph JW. Debriefing assessment for simulation in healthcare (DASH)© rater’s handbook. Boston: Center for Medical Simulation. 2010. https://harvardmedsim.org/wp-content/uploads/2017/01/DASH.handbook.2010.Final.Rev.2.pdf. English, French, German, Japanese, Spanish.

  51. https://whatis.techtarget.com/definition/Web-20-or-Web-2. Accessed 1 Sept 2018.

  52. Kong S, Shin S, Song K, et al. Effect of instructor’s real-time feedback using QCPR-classroom device during layperson cardiopulmonary resuscitation (CPR) training on quality of CPR performances: a prospective cluster-randomised trial. BMJ Open. 2018;8. https://doi.org/10.1136/bmjopen-2018-EMS.25.

  53. Wood FE, Morley CJ, Dawson JA, Kamlin COF, Owen LS, Donath S, Davis PG. Improved techniques reduce face mask leak during simulated neonatal resuscitation: study 2. Arch Dis Child Fetal Neonatal Ed. 2008;93(3):F230–4.

    Article  PubMed  Google Scholar 

  54. Botden SM, Torab F, Buzink SN, Jakimowicz JJ. The importance of haptic feedback in laparoscopic suturing training and the additive value of virtual reality simulation. Surg Endosc. 2008;22(5):1214–22.

    Article  PubMed  Google Scholar 

  55. Panait L, Akkary E, Bell RL, Roberts KE, Dudrick SJ, Duffy AJ. The role of haptic feedback in laparoscopic simulation training. J Surg Res. 2009;156(2):312–6.

    Article  PubMed  Google Scholar 

  56. Thawani JP, Ramayya AG, Abdullah KG, Hudgins E, Vaughan K, Piazza M, Madsen PJ, Buch V, Grady MS. Resident simulation training in endoscopic endonasal surgery utilizing haptic feedback technology. J Clin Neurosci. 2016;34:112–6.

    Article  PubMed  Google Scholar 

  57. Agarwal A, Leviter J, Mannarino C, Levit O, Johnston L, Auerbach M. Is a haptic simulation interface more effective than computer mouse-based interface for neonatal intubation skills training? BMJ Simul Technol Enhanc Learn. 2015;1(1):5–11.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Draycott TJ, Crofts JF, Ash JP, Wilson LV, Yard E, Sibanda T, Whitelaw A. Improving neonatal outcome through practical shoulder dystocia training. Obstet Gynecol. 2008;112(1):14–20.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Cusack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bonfield, A., Cusack, J. (2020). Effective Training in Neonatal Medicine. In: Boyle, E., Cusack, J. (eds) Emerging Topics and Controversies in Neonatology. Springer, Cham. https://doi.org/10.1007/978-3-030-28829-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28829-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28828-0

  • Online ISBN: 978-3-030-28829-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics