Skip to main content

Long Term Effects Following Extreme Prematurity: Respiratory Problems

  • Chapter
  • First Online:
Emerging Topics and Controversies in Neonatology

Abstract

It is well established that survivors of extreme prematurity experience neurodevelopmental and respiratory sequelae into childhood and beyond. This chapter will review the literature in regards to long term respiratory outcomes of extreme prematurity following discharge from hospital and discuss the multifactorial aetiology of prematurity-associated lung disease. It will provide insights in novel methods of physiological assessment and identification of biomarkers, which hold the promise of a more personalised approach to therapy, and will examine the latest developments in areas where the evidence base for treatment and management of prematurity-associated respiratory disease has been lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller A-B, Narwal R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012;379(9832):2162–72.

    Article  PubMed  Google Scholar 

  2. Joshi S, Kotecha S. Lung growth and development. Early Hum Dev. 2007;83(12):789–94.

    Article  CAS  PubMed  Google Scholar 

  3. Chakraborty M, McGreal EP, Kotecha S. Acute lung injury in preterm newborn infants: mechanisms and management. Paediatr Respir Rev. 2010;11(3):162–70; quiz 70.

    Article  PubMed  Google Scholar 

  4. Costeloe K, Hennessy E, Gibson AT, Marlow N, Wilkinson AR. The EPICure study: outcomes to discharge from hospital for infants born at the threshold of viability. Pediatrics. 2000;106(4 I):659–71.

    Article  CAS  PubMed  Google Scholar 

  5. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163(7):1723–9.

    Article  CAS  PubMed  Google Scholar 

  6. Simpson SJ, Logie KM, O'Dea CA, Banton GL, Murray C, Wilson AC, et al. Altered lung structure and function in mid-childhood survivors of very preterm birth. Thorax. 2017;72(8):702–11.

    Article  PubMed  Google Scholar 

  7. Aukland SM, Rosendahl K, Owens CM, Fosse KR, Eide GE, Halvorsen T. Neonatal bronchopulmonary dysplasia predicts abnormal pulmonary HRCT scans in long-term survivors of extreme preterm birth. Thorax. 2009;64(5):405–10.

    Article  CAS  PubMed  Google Scholar 

  8. Narayanan M, Owers-Bradley J, Beardsmore CS, Mada M, Ball I, Garipov R, et al. Alveolarization continues during childhood and adolescence: new evidence from helium-3 magnetic resonance. Am J Respir Crit Care Med. 2012;185(2):186–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Narayanan M, Beardsmore CS, Owers-Bradley J, Dogaru CM, Mada M, Ball I, et al. Catch-up alveolarization in ex-preterm children: evidence from (3)He magnetic resonance. Am J Respir Crit Care Med. 2013;187(10):1104–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Flors L, Mugler JP III, Paget-Brown A, Froh DK, de Lange EE, Patrie JT, et al. Hyperpolarized Helium-3 diffusion-weighted magnetic resonance imaging detects abnormalities of lung structure in children with bronchopulmonary dysplasia. J Thorac Imaging. 2017;32(5):323–32.

    Article  PubMed  Google Scholar 

  11. Vollsaeter M, Roksund OD, Eide GE, Markestad T, Halvorsen T. Lung function after preterm birth: development from mid-childhood to adulthood. Thorax. 2013;68(8):767–76.

    Article  PubMed  Google Scholar 

  12. Cutz E, Chiasson D. Chronic lung disease after premature birth. N Engl J Med. 2008;358(7):743–6.

    Article  CAS  PubMed  Google Scholar 

  13. Wong PM, Lees AN, Louw J, Lee FY, French N, Gain K, et al. Emphysema in young adult survivors of moderate-to-severe bronchopulmonary dysplasia. Eur Respir J. 2008;32(2):321–8.

    Article  CAS  PubMed  Google Scholar 

  14. Caskey S, Gough A, Rowan S, Gillespie S, Clarke J, Riley M, et al. Structural and functional lung impairment in adult survivors of bronchopulmonary dysplasia. Ann Am Thorac Soc. 2016;13(8):1262–70.

    Article  PubMed  Google Scholar 

  15. Pramana IA, Latzin P, Schlapbach LJ, Hafen G, Kuehni CE, Nelle M, et al. Respiratory symptoms in preterm infants: burden of disease in the first year of life. Eur J Med Res. 2011;16(5):223–30.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Edwards MO, Kotecha SJ, Lowe J, Richards L, Watkins WJ, Kotecha S. Management of prematurity-associated wheeze and its association with atopy. PLoS One. 2016;11(5):e0155695.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Paranjothy S, Dunstan F, Watkins WJ, Hyatt M, Demmler JC, Lyons RA, et al. Gestational age, birth weight, and risk of respiratory hospital admission in childhood. Pediatrics. 2013;132(6):e1562–9.

    Article  PubMed  Google Scholar 

  18. Boyle EM, Poulsen G, Field DJ, Kurinczuk JJ, Wolke D, Alfirevic Z, et al. Effects of gestational age at birth on health outcomes at 3 and 5 years of age: population based cohort study. BMJ. 2012;344:e896.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hennessy EM, Bracewell MA, Wood N, Wolke D, Costeloe K, Gibson A, et al. Respiratory health in pre-school and school age children following extremely preterm birth. Arch Dis Child. 2008;93(12):1037–43.

    Article  CAS  PubMed  Google Scholar 

  20. Fawke J, Lum S, Kirkby J, Hennessy E, Marlow N, Rowell V, et al. Lung function and respiratory symptoms at 11 years in children born extremely preterm: the EPICure study. Am J Respir Crit Care Med. 2010;182(2):237–45.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Miller JE, Hammond GC, Strunk T, Moore HC, Leonard H, Carter KW, et al. Association of gestational age and growth measures at birth with infection-related admissions to hospital throughout childhood: a population-based, data-linkage study from Western Australia. Lancet Infect Dis. 2016;16(8):952–61.

    Article  PubMed  Google Scholar 

  22. Townsi N, Laing IA, Hall GL, Simpson SJ. The impact of respiratory viruses on lung health after preterm birth. Eur Clin Respir J. 2018;5(1):1487214.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Narang I, Rosenthal M, Cremonesini D, Silverman M, Bush A. Longitudinal evaluation of airway function 21 years after preterm birth. Am J Respir Crit Care Med. 2008;178(1):74–80.

    Article  PubMed  Google Scholar 

  24. Filippone M, Bonetto G, Cherubin E, Carraro S, Baraldi E. Childhood course of lung function in survivors of bronchopulmonary dysplasia. JAMA. 2009;302(13):1418–20.

    Article  CAS  PubMed  Google Scholar 

  25. Simpson SJ, Turkovic L, Wilson AC, Verheggen M, Logie KM, Pillow JJ, et al. Lung function trajectories throughout childhood in survivors of very preterm birth: a longitudinal cohort study. Lancet Child Adolesc Health. 2018;2(5):350–9.

    Article  PubMed  Google Scholar 

  26. Been JV, Lugtenberg MJ, Smets E, van Schayck CP, Kramer BW, Mommers M, et al. Preterm birth and childhood wheezing disorders: a systematic review and meta-analysis. PLoS Med. 2014;11(1):e1001596.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gough A, Linden M, Spence D, Patterson CC, Halliday HL, McGarvey LPA. Impaired lung function and health status in adult survivors of bronchopulmonary dysplasia. Eur Respir J. 2014;43(3):808.

    Article  PubMed  Google Scholar 

  28. Landry JS, Tremblay GM, Li PZ, Wong C, Benedetti A, Taivassalo T. Lung function and bronchial hyperresponsiveness in adults born prematurely. a cohort study. Ann Am Thorac Soc. 2016;13(1):17–24.

    Article  PubMed  Google Scholar 

  29. Gough A, Spence D, Linden M, Halliday HL, McGarvey LP. General and respiratory health outcomes in adult survivors of bronchopulmonary dysplasia: a systematic review. Chest. 2012;141(6):1554–67.

    Article  PubMed  Google Scholar 

  30. Jobe AJ. The new BPD: an arrest of lung development. Pediatr Res. 1999;46(6):641–3.

    Article  CAS  PubMed  Google Scholar 

  31. Friedrich L, Pitrez PM, Stein RT, Goldani M, Tepper R, Jones MH. Growth rate of lung function in healthy preterm infants. Am J Respir Crit Care Med. 2007;176(12):1269–73.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fakhoury KF, Sellers C, Smith EO, Brian RJA, Fan LL. Serial measurements of lung function in a cohort of young children with bronchopulmonary dysplasia. Pediatrics. 2010;125(6):e1441.

    Article  PubMed  Google Scholar 

  33. Proietti E, Riedel T, Fuchs O, Pramana I, Singer F, Schmidt A, et al. Can infant lung function predict respiratory morbidity during the first year of life in preterm infants? Eur Respir J. 2014;43(6):1642–51.

    Article  PubMed  Google Scholar 

  34. Kotecha SJ, Edwards MO, Watkins WJ, Henderson AJ, Paranjothy S, Dunstan FD, et al. Effect of preterm birth on later FEV1: a systematic review and meta-analysis. Thorax. 2013;68(8):760–6.

    Article  PubMed  Google Scholar 

  35. Green M, Mead J, Turner JM. Variability of maximum expiratory flow-volume curves. J Appl Physiol. 1974;37(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  36. Forno E, Weiner DJ, Mullen J, Sawicki G, Kurland G, Han YY, et al. Obesity and airway dysanapsis in children with and without asthma. Am J Respir Crit Care Med. 2017;195(3):314–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lowe J, Kotecha SJ, Watkins WJ, Kotecha S. Effect of fetal and infant growth on respiratory symptoms in preterm-born children. Pediatr Pulmonol. 2018;53(2):189–96.

    Article  PubMed  Google Scholar 

  38. Udomittipong K, Sly PD, Patterson HJ, Gangell CL, Stick SM, Hall GL. Forced oscillations in the clinical setting in young children with neonatal lung disease. Eur Respir J. 2008;31(6):1292–9.

    Article  CAS  PubMed  Google Scholar 

  39. Vrijlandt EJLE, Boezen HM, Gerritsen J, Stremmelaar EF, Duiverman EJ. Respiratory health in prematurely born preschool children with and without bronchopulmonary dysplasia. J Pediatr. 2007;150(3):256–61.

    Article  CAS  PubMed  Google Scholar 

  40. Yammine S, Schmidt A, Sutter O, Fouzas S, Singer F, Frey U, et al. Functional evidence for continued alveolarisation in former preterms at school age. Eur Respir J. 2016;47(1):147–55.

    Article  PubMed  Google Scholar 

  41. Kotecha SJ, Watkins WJ, Paranjothy S, Dunstan FD, Henderson AJ, Kotecha S. Effect of late preterm birth on longitudinal lung spirometry in school age children and adolescents. Thorax. 2012;67(1):54–61.

    Article  PubMed  Google Scholar 

  42. Doyle LW, Adams AM, Robertson C, Ranganathan S, Davis NM, Lee KJ, et al. Increasing airway obstruction from 8 to 18 years in extremely preterm/low-birthweight survivors born in the surfactant era. Thorax. 2017;72(8):712–9.

    Article  PubMed  Google Scholar 

  43. Edwards MO, Kotecha SJ, Lowe J, Watkins WJ, Henderson AJ, Kotecha S. Effect of preterm birth on exercise capacity: a systematic review and meta-analysis. Pediatr Pulmonol. 2015;50(3):293–301.

    Article  PubMed  Google Scholar 

  44. Clemm HH, Vollsaeter M, Roksund OD, Eide GE, Markestad T, Halvorsen T. Exercise capacity after extremely preterm birth. Development from adolescence to adulthood. Ann Am Thorac Soc. 2014;11(4):537–45.

    Article  PubMed  Google Scholar 

  45. Lowe J, Watkins WJ, Kotecha SJ, Kotecha S. Physical activity and sedentary behavior in preterm-born 7-year old children. PLoS One. 2016;11(5):e0155229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kaseva N, Wehkalampi K, Strang-Karlsson S, Salonen M, Pesonen AK, Raikkonen K, et al. Lower conditioning leisure-time physical activity in young adults born preterm at very low birth weight. PLoS One. 2012;7(2):e32430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Urs R, Kotecha S, Hall GL, Simpson SJ. Persistent and progressive long-term lung disease in survivors of preterm birth. Paediatr Respir Rev. 2018;28:87–94.

    PubMed  Google Scholar 

  48. Stocks J, Sonnappa S. Early life influences on the development of chronic obstructive pulmonary disease. Ther Adv Respir Dis. 2013;7(3):161–73.

    Article  PubMed  Google Scholar 

  49. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40(6):1324–43.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bush A. COPD: a pediatric disease. COPD. 2008;5:53–67.

    Article  PubMed  Google Scholar 

  51. Barker DJ, Osmond C, Forsen TJ, Thornburg KL, Kajantie E, Eriksson JG. Foetal and childhood growth and asthma in adult life. Acta Paediatr. 2013;102(7):732–8.

    Article  PubMed  Google Scholar 

  52. Narang I. Review series: What goes around, comes around: childhood influences on later lung health? Long-term follow-up of infants with lung disease of prematurity. Chron Respir Dis. 2010;7(4):259–69.

    Article  PubMed  Google Scholar 

  53. Stocks J, Hislop A, Sonnappa S. Early lung development: lifelong effect on respiratory health and disease. Lancet Respir Med. 2013;1(9):728–42.

    Article  PubMed  Google Scholar 

  54. Vollsaeter M, Skromme K, Satrell E, Clemm H, Roksund O, Oymar K, et al. Children born preterm at the turn of the millennium had better lung function than children born similarly preterm in the early 1990s. PLoS One. 2015;10(12):e0144243.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Bolton CE, Bush A, Hurst JR, Kotecha S, McGarvey L. Lung consequences in adults born prematurely. Thorax. 2015;70(6):574–80.

    Article  PubMed  Google Scholar 

  56. Henderson J, Granell R, Heron J, Sherriff A, Simpson A, Woodcock A, et al. Associations of wheezing phenotypes in the first 6 years of life with atopy, lung function and airway responsiveness in mid-childhood. Thorax. 2008;63(11):974–80.

    Article  CAS  PubMed  Google Scholar 

  57. Filippone M, Carraro S, Baraldi E. The term “asthma” should be avoided in describing the chronic pulmonary disease of prematurity. Eur Respir J. 2013;42(5):1430.

    Article  PubMed  Google Scholar 

  58. Teig N, Allali M, Rieger C, Hamelmann E. Inflammatory markers in induced sputum of school children born before 32 completed weeks of gestation. J Pediatr. 2012;161(6):1085–90.

    Article  CAS  PubMed  Google Scholar 

  59. Filippone M, Bonetto G, Corradi M, Frigo AC, Baraldi E. Evidence of unexpected oxidative stress in airways of adolescents born very pre-term. Eur Respir J. 2012;40(5):1253–9.

    Article  PubMed  Google Scholar 

  60. Halvorsen T, Skadberg BT, Eide GE, Roksund O, Aksnes L, Oymar K. Characteristics of asthma and airway hyper-responsiveness after premature birth. Pediatr Allergy Immunol. 2005;16(6):487–94.

    Article  PubMed  Google Scholar 

  61. Suursalmi P, Kopeli T, Korhonen P, Lehtimaki L, Nieminen R, Luukkaala T, et al. Very low birthweight bronchopulmonary dysplasia survivors show no substantial association between lung function and current inflammatory markers. Acta Paediatr. 2015;104(3):264–8.

    Article  CAS  PubMed  Google Scholar 

  62. Korhonen PH, Suursalmi PH, Kopeli T, Nieminen R, Lehtimaki L, Luukkaala T, et al. Inflammatory activity at school age in very low birth weight bronchopulmonary dysplasia survivors. Pediatr Pulmonol. 2015;50(7):683–90.

    Article  PubMed  Google Scholar 

  63. Bozzetto S, Pirillo P, Carraro S, Berardi M, Cesca L, Stocchero M, et al. Metabolomic profile of children with recurrent respiratory infections. Pharmacol Res. 2017;115:162–7.

    Article  CAS  PubMed  Google Scholar 

  64. Carraro S, Rezzi S, Reniero F, Heberger K, Giordano G, Zanconato S, et al. Metabolomics applied to exhaled breath condensate in childhood asthma. Am J Respir Crit Care Med. 2007;175(10):986–90.

    Article  CAS  PubMed  Google Scholar 

  65. Tenero L, Zaffanello M, Piazza M, Piacentini G. Measuring airway inflammation in asthmatic children. Front Pediatr. 2018;6:196.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Neerincx AH, Vijverberg SJH, Bos LDJ, Brinkman P, van der Schee MP, de Vries R, et al. Breathomics from exhaled volatile organic compounds in pediatric asthma. Pediatr Pulmonol. 2017;52(12):1616–27.

    Article  PubMed  Google Scholar 

  67. Smolinska A, Klaassen EMM, Dallinga JW, van de Kant KDG, Jobsis Q, Moonen EJC, et al. Profiling of volatile organic compounds in exhaled breath as a strategy to find early predictive signatures of asthma in children. PLoS One. 2014;9(4):e95668.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Robroeks CM, van Berkel JJ, Jobsis Q, van Schooten FJ, Dallinga JW, Wouters EF, et al. Exhaled volatile organic compounds predict exacerbations of childhood asthma in a 1-year prospective study. Eur Respir J. 2013;42(1):98–106.

    Article  CAS  PubMed  Google Scholar 

  69. Anderson GP. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet. 2008;372(9643):1107–19.

    Article  PubMed  Google Scholar 

  70. Greenough A, Alexander J, Burgess S, Bytham J, Chetcuti PAJ, Hagan J, et al. Health care utilisation of prematurely born, preschool children related to hospitalisation for RSV infection. Arch Dis Child. 2004;89(7):673–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Melville JM, Moss TJ. The immune consequences of preterm birth. Front Neurosci. 2013;7:79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Roman M, Calhoun WJ, Hinton KL, Avendano LF, Simon V, Escobar AM, et al. Respiratory syncytial virus infection in infants is associated with predominant Th-2-like response. Am J Respir Crit Care Med. 1997;156(1):190–5.

    Article  CAS  PubMed  Google Scholar 

  73. Greenough A, Alexander J, Boit P, Boorman J, Burgess S, Burke A, et al. School age outcome of hospitalisation with respiratory syncytial virus infection of prematurely born infants. Thorax. 2009;64(6):490–5.

    Article  CAS  PubMed  Google Scholar 

  74. Régnier SA, Huels J. Association between respiratory syncytial virus hospitalizations in infants and respiratory sequelae: Systematic review and meta-analysis. Pediatr Infect Dis J. 2013;32(8):820–6.

    PubMed  Google Scholar 

  75. The IMpact-RSV Study Group. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. Pediatrics. 1998;102(3 Pt 1):531–7.

    Article  Google Scholar 

  76. AAo P. Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. Pediatrics. 2014;134(2):e620.

    Article  Google Scholar 

  77. Public Health England. Respiratory syncytial virus: the green book, Chapter 27a. 2015. https://www.gov.uk/government/publications/respiratory-syncytial-virus-the-green-book-chapter-27a. Accessed 30 Jun 2018.

  78. Robbie GJ, Zhao L, Mondick J, Losonsky G, Roskos LK. Population pharmacokinetics of palivizumab, a humanized anti-respiratory syncytial virus monoclonal antibody, in adults and children. Antimicrob Agents Chemother. 2012;56(9):4927–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Blanken MO, Rovers MM, Molenaar JM, Winkler-Seinstra PL, Meijer A, Kimpen JLL, et al. Respiratory syncytial virus and recurrent wheeze in healthy preterm infants. N Engl J Med. 2013;368(19):1791–9.

    Article  CAS  PubMed  Google Scholar 

  80. Scheltema NM, Nibbelke EE, Pouw J, Blanken MO, Rovers MM, Naaktgeboren CA, et al. Respiratory syncytial virus prevention and asthma in healthy preterm infants: a randomised controlled trial. Lancet Respir Med. 2018;6(4):257–64.

    Article  PubMed  Google Scholar 

  81. Mochizuki H, Kusuda S, Okada K, Yoshihara S, Furuya H, Simões EAF, et al. Palivizumab prophylaxis in preterm infants and subsequent recurrent wheezing. Six-year follow-up study. Am J Respir Crit Care Med. 2017;196(1):29–38.

    Article  PubMed  Google Scholar 

  82. Fitzgerald DA. Preventing RSV bronchiolitis in vulnerable infants: the role of palivizumab. Paediatr Respir Rev. 2009;10(3):143–7.

    Article  PubMed  Google Scholar 

  83. Bolton CE, Bush A, Hurst JR, Kotecha S, McGarvey L, Stocks J, et al. Are early life factors considered when managing respiratory disease? A British Thoracic Society survey of current practice. Thorax. 2012;67(12):1110.

    Article  PubMed  Google Scholar 

  84. Kotecha SJ, Edwards MO, Watkins WJ, Lowe J, Henderson AJ, Kotecha S. Effect of bronchodilators on forced expiratory volume in 1 s in preterm-born participants aged 5 and over: a systematic review. Neonatology. 2015;107(3):231–40.

    Article  PubMed  Google Scholar 

  85. Pelkonen AS, Hakulinen AL, Turpeinen M. Bronchial lability and responsiveness in school children born very preterm. Am J Respir Crit Care Med. 1997;156(4 Pt 1):1178–84.

    Article  CAS  PubMed  Google Scholar 

  86. Pelkonen AS, Hakulinen AL, Hallman M, Turpeinen M. Effect of inhaled budesonide therapy on lung function in schoolchildren born preterm. Respir Med. 2001;95(7):565–70.

    Article  CAS  PubMed  Google Scholar 

  87. Joshi S, Powell T, Watkins WJ, Drayton M, Williams EM, Kotecha S. Exercise-induced bronchoconstriction in school-aged children who had chronic lung disease in infancy. J Pediatr. 2013;162(4):813–8.

    Article  PubMed  Google Scholar 

  88. Berry M, Morgan A, Shaw DE, Parker D, Green R, Brightling C, et al. Pathological features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. Thorax. 2007;62(12):1043–9.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wenzel S, Schwartz L, Langmack E, Halliday J, Trudeau J, Gibbs R, et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med. 1999;160(3):1001–8.

    Article  CAS  PubMed  Google Scholar 

  90. Haldar P, Pavord ID. Noneosinophilic asthma: a distinct clinical and pathologic phenotype. J Allergy Clin Immunol. 2007;119(5):1043–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sailesh Kotecha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lowe, J., Kotecha, S.J., Kotecha, S. (2020). Long Term Effects Following Extreme Prematurity: Respiratory Problems. In: Boyle, E., Cusack, J. (eds) Emerging Topics and Controversies in Neonatology. Springer, Cham. https://doi.org/10.1007/978-3-030-28829-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28829-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28828-0

  • Online ISBN: 978-3-030-28829-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics