Skip to main content

Non-invasive Respiratory Support

  • Chapter
  • First Online:
  • 759 Accesses

Abstract

For stabilising preterm infants with signs of respiratory distress, the current paradigm of best clinical practice is to support the breathing preterm infant with non-invasive respiratory support from birth. A substantial body of evidence, based on randomised controlled clinical trials, confirms that non-invasive respiratory support is superior over intubation and mechanical ventilation for the prevention of death or bronchopulmonary dysplasia (BPD). Whilst various methods of non-invasive respiratory support are available, the underlying pathophysiology of lung disease, the infants’ gestation, and aspects of local neonatal facilities need to be considered when advising regarding the best possible form of non-invasive respiratory support.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gregory GA, Kitterman JA, Phibbs RH, Tooley WH, Hamilton WK. Treatment of the idiopathic respiratory-distress syndrome with continuous positive airway pressure. N Engl J Med. 1971;284:1333–40.

    Article  CAS  PubMed  Google Scholar 

  2. Mahmoud RA, Roehr CC, Schmalisch G. Current methods of non-invasive ventilatory support for neonates. Paediatr Respir Rev. 2011;12:196–205.

    Article  PubMed  Google Scholar 

  3. Polglase GR, Wallace MJ, Grant DA, Hooper SB. Influence of fetal breathing movements on pulmonary hemodynamics in fetal sheep. Pediatr Res. 2004;56:932–8.

    Article  PubMed  Google Scholar 

  4. Jani JC, Flemmer AW, Bergmann F, Gallot D, Roubliova X, Muensterer OJ, Hajek K, Deprest JA. The effect of fetal tracheal occlusion on lung tissue mechanics and tissue composition. Pediatr Pulmonol. 2009;44:112–21.

    Article  PubMed  Google Scholar 

  5. Hooper SB, Te Pas AB, Kitchen MJ. Respiratory transition in the newborn: a three-phase process. Arch Dis Child Fetal Neonatal Ed. 2016;101:F266–71.

    Article  PubMed  Google Scholar 

  6. Vyas H, Field D, Milner AD, Hopkin IE. Determinants of the first inspiratory volume and functional residual capacity at birth. Pediatr Pulmonol. 1986;2:189–93.

    Article  CAS  PubMed  Google Scholar 

  7. Hooper SB, Harding R. Fetal lung liquid: a major determinant of the growth and functional development of the fetal lung. Clin Exp Pharmacol Physiol. 1995;22:235–47.

    Article  CAS  PubMed  Google Scholar 

  8. Siew ML, Wallace MJ, Allison BJ, Kitchen MJ, te Pas AB, Islam MS, Lewis RA, Fouras A, Yagi N, Uesugi K, Hooper SB. The role of lung inflation and sodium transport in airway liquid clearance during lung aeration in newborn rabbits. Pediatr Res. 2013;73:443–9.

    Article  CAS  PubMed  Google Scholar 

  9. Karlberg P. The adaptive changes in the immediate postnatal period, with particular reference to respiration. J Pediatr. 1960;56:585–604.

    Article  CAS  PubMed  Google Scholar 

  10. Siew ML, Te Pas AB, Wallace MJ, Kitchen MJ, Lewis RA, Fouras A, Morley CJ, Davis PG, Yagi N, Uesugi K, Hooper SB. Positive end-expiratory pressure enhances development of a functional residual capacity in preterm rabbits ventilated from birth. J Appl Physiol (1985). 2009;106:1487–93.

    Article  Google Scholar 

  11. Jobe AH. Lung maturation: the survival miracle of very low birth weight infants. Pediatr Neonatol. 2010;51:7–13.

    Article  PubMed  Google Scholar 

  12. Jobe AH. Lung maturational agents and surfactant treatments: are they complementary in preterm infants? J Perinatol. 1989;9:14–8.

    CAS  PubMed  Google Scholar 

  13. Trippenbach T. Pulmonary reflexes and control of breathing during development. Biol Neonate. 1994;65:205–10.

    Article  CAS  PubMed  Google Scholar 

  14. Engoren M, Courtney SE, Habib RH. Effect of weight and age on respiratory complexity in premature neonates. J Appl Physiol. 2009;106:766–73.

    Article  PubMed  Google Scholar 

  15. Stoll BJ, Hansen NI, Bell EF, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. JAMA. 2015;314:1039–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Edwards MO, Kotecha SJ, Kotecha S. Respiratory distress of the term newborn infant. Paediatr Respir Rev. 2013;14:29–36.

    Article  PubMed  Google Scholar 

  17. Speer CP, Sweet DG, Halliday HL. Surfactant therapy: past, present and future. Early Hum Dev. 2013;89(Suppl 1):S22–4.

    Article  CAS  PubMed  Google Scholar 

  18. Baraldi E, Filippone M. Chronic lung disease after premature birth. N Engl J Med. 2007;357:1946–55.

    Article  CAS  PubMed  Google Scholar 

  19. Curstedt T, Halliday HL, Hallman M, Saugstad OD, Speer CP. 30 years of surfactant research—from basic science to new clinical treatments for the preterm infant. Neonatology. 2015;107:314–6.

    Article  PubMed  Google Scholar 

  20. Jobe AH, Ikegami M. Prevention of bronchopulmonary dysplasia. Curr Opin Pediatr. 2001;13:124–9.

    Article  CAS  PubMed  Google Scholar 

  21. Avery ME, Tooley WH, Keller JB, Hurd SS, Bryan MH, Cotton RB, Epstein MF, Fitzhardinge PM, Hansen CB, Hansen TN, et al. Is chronic lung disease in low birth weight infants preventable? A survey of eight centers. Pediatrics. 1987;79:26–30.

    CAS  PubMed  Google Scholar 

  22. Dunn MS, Kaempf J, de Klerk A, de Klerk R, Reilly M, Howard D, Ferrelli K, O'Conor J, Soll RF, Vermont Oxford Network DRM Study Group. Randomized trial comparing 3 approaches to the initial respiratory management of preterm neonates. Pediatrics. 2011;128:e1069–76.

    Article  PubMed  Google Scholar 

  23. Finer NN, Carlo WA, Walsh MC, et al. Early CPAP versus surfactant in extremely preterm infants. N Engl J Med. 2010;362:1970–9.

    Article  CAS  PubMed  Google Scholar 

  24. Morley CJ, Davis PG, Doyle LW, Brion LP, Hascoet JM, Carlin JB, COIN Trial Investigators. Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med. 2008;358:700–8.

    Article  CAS  PubMed  Google Scholar 

  25. Rojas MA, Lozano JM, Rojas MX, Laughon M, Bose CL, Rondon MA, Charry L, Bastidas JA, Perez LA, Rojas C, Ovalle O, Celis LA, Garcia-Harker J, Jaramillo ML, Colombian Neonatal Research Network. Very early surfactant without mandatory ventilation in premature infants treated with early continuous positive airway pressure: a randomized, controlled trial. Pediatrics. 2009;123:137–42.

    Article  PubMed  Google Scholar 

  26. Polin R, Committee on Fetus and Newborn; American Academy of Pediatrics. Respiratory support in preterm infants at birth. Pediatrics. 2014;133:171–4.

    Article  Google Scholar 

  27. Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Te Pas A, Plavka R, Roehr CC, Saugstad OD, Simeoni U, Speer CP, Vento M, GHA V, Halliday HL. European consensus guidelines on the management of respiratory distress syndrome – 2019 update. Neonatology. 2019;115:432–51.

    Article  PubMed  Google Scholar 

  28. Morley CJ, Davis PG. Continuous positive airway pressure: scientific and clinical rationale. Curr Opin Pediatr. 2008;20:119–24.

    Article  PubMed  Google Scholar 

  29. Migliori C, Motta M, Angeli A, et al. Nasal bilevel vs. continuous positive airway pressure in preterm infants. Pediatr Pulmonol. 2005;40:426–30.

    Article  PubMed  Google Scholar 

  30. Speidel BD, Dunn PM. Effect of continuous positive airway pressure on breathing pattern of infants with respiratory-distress syndrome. Lancet. 1975;1:302–4.

    Article  CAS  PubMed  Google Scholar 

  31. Vogtmann C, Böttcher H, Raue W. [Problems of ventilation disorders in newborn and therapy possibilities]. Z Arztl Fortbild (Jena). 1974;68:77–82.

    Google Scholar 

  32. Roehr CC, Schmalisch G, Khakban A, Proquitté H, Wauer RR. Use of continuous positive airway pressure (CPAP) in neonatal units—a survey of current preferences and practice in Germany. Eur J Med Res. 2007;12:139–44.

    CAS  PubMed  Google Scholar 

  33. Coman IM. The bright minds beyond our machines: Henry Coanda and his ideas. J Cardiovasc Med. 2007;8:251–2.

    Article  Google Scholar 

  34. Pillow JJ, Hillman N, Moss TJ, Polglase G, Bold G, Beaumont C, Ikegami M, Jobe AH. Bubble continuous positive airway pressure enhances lung volume and gas exchange in preterm lambs. Am J Respir Crit Care Med. 2007;176:63–9.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lee KS, Dunn MS, Fenwick M, Shennan AT. A comparison of underwater bubble continuous positive airway pressure with ventilator-derived continuous positive airway pressure in premature neonates ready for extubation. Biol Neonate. 1998;73:69–75.

    Article  CAS  PubMed  Google Scholar 

  36. Courtney SE, Kahn DJ, Singh R, Habib RH. Bubble and ventilator-derived nasal continuous positive airway pressure in premature infants: work of breathing and gas exchange. J Perinatol. 2011;31:44–50.

    Article  CAS  PubMed  Google Scholar 

  37. Pandit PB, Courtney SE, Pyon KH, Saslow JG, Habib RH. Work of breathing during constant- and variable-flow nasal continuous positive airway pressure in preterm neonates. Pediatrics. 2001;108:682–5.

    Article  CAS  PubMed  Google Scholar 

  38. O’Donnell CP, Kamlin CO, Davis PG, Morley CJ. Crying and breathing by extremely preterm infants immediately after birth. J Pediatr. 2010;156:846–7.

    Article  PubMed  Google Scholar 

  39. Schmölzer GM, Kumar M, Pichler G, Aziz K, O’Reilly M, Cheung PY. Non-invasive versus invasive respiratory support in preterm infants at birth: systematic review and meta-analysis. BMJ. 2013;347:f5980.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fischer HS, Bührer C. Avoiding endotracheal ventilation to prevent bronchopulmonary dysplasia: a meta-analysis. Pediatrics. 2013;132:e1351–60.

    Article  PubMed  Google Scholar 

  41. Roehr CC, Proquitté H, Hammer H, Wauer RR, Morley CJ, Schmalisch G. Positive effects of early continuous positive airway pressure on pulmonary function in extremely premature infants: results of a subgroup analysis of the COIN trial. Arch Dis Child Fetal Neonatal Ed. 2011;96:F371–3.

    Article  CAS  PubMed  Google Scholar 

  42. Roehr CC, Yoder BA, Davis PG, Ives K. Evidence support and guidelines for using heated, humidified, high-flow nasal cannulae in neonatology: Oxford nasal high-flow therapy meeting, 2015. Clin Perinatol. 2016;43:693–705.

    Article  PubMed  Google Scholar 

  43. Wilkinson DJ, Andersen CC, Smith K, Holberton J. Pharyngeal pressure with high-flow nasal cannulae in premature infants. J Perinatol. 2008;28:42–7.

    Article  CAS  PubMed  Google Scholar 

  44. Lavizzari A, Veneroni C, Colnaghi M, Ciuffini F, Zannin E, Fumagalli M, Mosca F, Dellacà RL. Respiratory mechanics during NCPAP and HHHFNC at equal distending pressures. Arch Dis Child Fetal Neonatal Ed. 2014;99:F315–20.

    Article  PubMed  Google Scholar 

  45. Sivieri EM, Foglia EE, Abbasi S. Carbon dioxide washout during high flow nasal cannula versus nasal CPAP support: An in vitro study. Pediatr Pulmonol. 2017;52:792–8.

    Article  PubMed  Google Scholar 

  46. Dysart K, Miller TL, Wolfson MR, Shaffer TH. Research in high flow therapy: mechanisms of action. Respir Med. 2009;103:1400–5.

    Article  PubMed  Google Scholar 

  47. Reynolds P, Leontiadi S, Lawson T, Otunla T, Ejiwumi O, Holland N. Stabilisation of premature infants in the delivery room with nasal high flow. Arch Dis Child Fetal Neonatal Ed. 2016;101:F284–7.

    Article  PubMed  Google Scholar 

  48. Lavizzari A, Colnaghi M, Ciuffini F, Veneroni C, Musumeci S, Cortinovis I, Mosca F. Heated, humidified high-flow nasal cannula vs nasal continuous positive airway pressure for respiratory distress syndrome of prematurity: a randomized clinical noninferiority trial. JAMA Pediatr. 2016;170:1228.

    Article  PubMed  Google Scholar 

  49. Roberts CT, Owen LS, Manley BJ, Frøisland DH, Donath SM, Dalziel KM, Pritchard MA, Cartwright DW, Collins CL, Malhotra A, Davis PG, HIPSTER Trial Investigators. Nasal high-flow therapy for primary respiratory support in preterm infants. N Engl J Med. 2016;375:1142–51.

    Article  PubMed  Google Scholar 

  50. Wilkinson D, Andersen C, O’Donnell CP, De Paoli AG, Manley BJ. High flow nasal cannula for respiratory support in preterm infants. Cochrane Database Syst Rev. 2016;(2):CD006405.

    Google Scholar 

  51. Zivanovic S, Scrivens A, Panza R, Reynolds P, Laforgia N, Ives KN, Roehr CC. Nasal high-flow therapy as primary respiratory support for preterm infants without the need for rescue with nasal continuous positive airway pressure. Neonatology. 2019;115:175–81.

    Article  PubMed  Google Scholar 

  52. Fuchs H, Lindner W, Leiprecht A, Mendler MR, Hummler HD. Predictors of early nasal CPAP failure and effects of various intubation criteria on the rate of mechanical ventilation in preterm infants of <29 weeks gestational age. Arch Dis Child Fetal Neonatal Ed. 2011;96:F343–7.

    Article  CAS  PubMed  Google Scholar 

  53. Dargaville PA, Aiyappan A, De Paoli AG, Dalton RG, Kuschel CA, Kamlin CO, Orsini F, Carlin JB, Davis PG. Continuous positive airway pressure failure in preterm infants: incidence, predictors and consequences. Neonatology. 2013;104:8–14.

    Article  CAS  PubMed  Google Scholar 

  54. Roberts CT, Davis PG, Owen LS. Neonatal non-invasive respiratory support: synchronised NIPPV, non-synchronised NIPPV or bi-level CPAP: what is the evidence in 2013? Neonatology. 2013;104:203–9.

    Article  CAS  PubMed  Google Scholar 

  55. Barrington KJ, Bull D, Finer NN. Randomized trial of nasal synchronized intermittent mandatory ventilation compared with continuous positive airway pressure after extubation of very low birth weight infants. Pediatrics. 2001;107:638–41.

    Article  CAS  PubMed  Google Scholar 

  56. Owen LS, Manley BJ. Nasal intermittent positive pressure ventilation in preterm infants: equipment, evidence, and synchronization. Semin Fetal Neonatal Med. 2016;21:146–53.

    Article  PubMed  Google Scholar 

  57. Charles E, Hunt KA, Rafferty GF, Peacock JL, Greenough A. Work of breathing during HHHFNC and synchronised NIPPV following extubation. Eur J Pediatr. 2019;178:105–10.

    Article  CAS  PubMed  Google Scholar 

  58. Claure N, Bancalari E. Non-invasive ventilation in premature infants. Arch Dis Child Fetal Neonatal Ed. 2015;100:F2–3.

    Article  PubMed  Google Scholar 

  59. Kuhle S, Urschitz MS, Eitner S, Poets CF. Interventions for obstructive sleep apnea in children: a systematic review. Sleep Med Rev. 2009;13:123–31.

    Article  PubMed  Google Scholar 

  60. Kugelman A, Riskin A, Said W, Shoris I, Mor F, Bader D. A randomized pilot study comparing heated humidified high-flow nasal cannulae with NIPPV for RDS. Pediatr Pulmonol. 2015;50:576–83.

    Article  PubMed  Google Scholar 

  61. Owen LS, Morley CJ, Davis PG. Effects of synchronisation during SiPAP-generated nasal intermittent positive pressure ventilation (NIPPV) in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2015;100:F24–30.

    Article  CAS  PubMed  Google Scholar 

  62. Ferguson KN, Roberts CT, Manley BJ, Davis PG. Interventions to improve rates of successful extubation in preterm infants: a systematic review and meta-analysis. JAMA Pediatr. 2017;171:165–74.

    Article  PubMed  Google Scholar 

  63. Kirpalani H, Millar D, Lemyre B, Yoder BA, Chiu A, Roberts RS, NIPPV Study Group. A trial comparing noninvasive ventilation strategies in preterm infants. N Engl J Med. 2013;369:611–20.

    Article  CAS  PubMed  Google Scholar 

  64. Pantalitschka T, Sievers J, Urschitz MS, Herberts T, Reher C, Poets CF. Randomised crossover trial of four nasal respiratory support systems for apnoea of prematurity in very low birthweight infants. Arch Dis Child Fetal Neonatal Ed. 2009;94:F245–8.

    Article  CAS  PubMed  Google Scholar 

  65. Czernik C, Schmalisch G, Bührer C, Proquitté H. Weaning of neonates from mechanical ventilation by use of nasopharyngeal high-frequency oscillatory ventilation: a preliminary study. J Matern Fetal Neonatal Med. 2012;25:374–8.

    Article  CAS  PubMed  Google Scholar 

  66. Mukerji A, Shah PS, Shivananda S, Yee W, Read B, Minski J, Alvaro R, Fusch C, Canadian Neonatal Network Investigators. Survey of noninvasive respiratory support practices in Canadian neonatal intensive care units. Acta Paediatr. 2017;106:387–93.

    Article  PubMed  Google Scholar 

  67. Fischer HS, Bohlin K, Bührer C, Schmalisch G, Cremer M, Reiss I, Czernik C. Nasal high-frequency oscillation ventilation in neonates: a survey in five European countries. Eur J Pediatr. 2015;174:465–71.

    Article  PubMed  Google Scholar 

  68. Colaizy TT, Younis UM, Bell EF, Klein JM. Nasal high-frequency ventilation for premature infants. Acta Paediatr. 2008;97:1518–22.

    Article  PubMed  PubMed Central  Google Scholar 

  69. De Luca D, Carnielli VP, Conti G, Piastra M. Noninvasive high frequency oscillatory ventilation through nasal prongs: bench evaluation of efficacy and mechanics. Intensive Care Med. 2010;36:2094–100.

    Article  PubMed  Google Scholar 

  70. Zhu XW, Zhao JN, Tang SF, Yan J, Shi Y. Noninvasive high-frequency oscillatory ventilation versus nasal continuous positive airway pressure in preterm infants with moderate-severe respiratory distress syndrome: a preliminary report. Pediatr Pulmonol. 2017;52:1038–42.

    Article  PubMed  Google Scholar 

  71. Fischer HS, Rimensberger PC. Early noninvasive high-frequency oscillatory ventilation in the primary treatment of respiratory distress syndrome. Pediatr Pulmonol. 2018;53:126–7.

    Article  PubMed  Google Scholar 

  72. Owen LS, Manley BJ, Davis PG, Doyle LW. The evolution of modern respiratory care for preterm infants. Lancet. 2017;389:1649–59.

    Article  PubMed  Google Scholar 

  73. Lemyre B, Davis PG, De Paoli AG, Kirpalani H. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation. Cochrane Database Syst Rev. 2014;(9):CD003212.

    Google Scholar 

  74. Klingenberg C, Pettersen M, Hansen EA, Gustavsen LJ, Dahl IA, Leknessund A, Kaaresen PI, Nordhov M. Patient comfort during treatment with heated humidified high flow nasal cannulae versus nasal continuous positive airway pressure: a randomised cross-over trial. Arch Dis Child Fetal Neonatal Ed. 2014;99:F134–7.

    Article  PubMed  Google Scholar 

  75. Roberts CT, Dawson JA, Alquoka E, Carew PJ, Donath SM, Davis PG, Manley BJ. Are high flow nasal cannulae noisier than bubble CPAP for preterm infants? Arch Dis Child Fetal Neonatal Ed. 2014;99:F291–5.

    Article  CAS  PubMed  Google Scholar 

  76. Zivanovic S, Roehr CC. One step further toward defining the optimal respiratory care package for neonates: interventions to successfully extubate preterm infants. JAMA Pediatr. 2017;171:120–1.

    Article  PubMed  Google Scholar 

  77. Dargaville PA. CPAP, surfactant, or both for the preterm infant: resolving the dilemma. JAMA Pediatr. 2015;169:715–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Christoph Roehr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roehr, C.C. (2020). Non-invasive Respiratory Support. In: Boyle, E., Cusack, J. (eds) Emerging Topics and Controversies in Neonatology. Springer, Cham. https://doi.org/10.1007/978-3-030-28829-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28829-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28828-0

  • Online ISBN: 978-3-030-28829-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics