Skip to main content

Part of the book series: Springer Series in Synergetics ((SSSYN))

  • 460 Accesses

Abstract

This chapter consists of two parts. In the first part, the fundamental mechanism of pattern formation will be explained. In this context, the notion of a pattern will be defined explicitly. In fact, it will be shown that pattern formation involves two different but related types of patterns: attractor and repellor patterns, on the one hand, and basis patterns, on the other. Attractor and repellor patterns can come, for example, as fixed point patterns. In this case, we are dealing with fixed point attractor and fixed point repellor patterns. Attractor patterns correspond to the patterns that we humans form with our bodies (e.g., when walking) or to brain activity patterns in the human brain. Attractor patterns corresponds to the patterns that are usually observed in experiments in the first place. Attractor patterns can turn into repellor patterns at bifurcation points, and in this context are like two sides of the same coin. Attractor patterns are composed of elementary units: the basis patterns. In special cases, an attractor pattern may be composed of a single basis pattern. In such cases, an attractor pattern is identical to a basis pattern. In the context of the basis patterns the abstract concept of eigenvalues will be introduced. By definition, these eigenvalues determine how quickly basis patterns emerge and disappear. However, taking all eigenvalues together as a set, the set of eigenvalues constitutes an eigenvalue spectrum. This spectrum is the key for understanding pattern formation in general, and transitions between attractor patterns, the emergence of attractor patterns, and bifurcations, in particular. That is, eigenvalues play a key role in the theory of pattern formation and synergetics. Finally, in the context of basis patterns also the concept of pattern amplitudes will be introduced. As will be explained below, pattern amplitudes describe how much basis patterns contribute to attractor patterns. Pattern amplitudes, in general, and the so-called reduced amplitude space, in particular, allow for a convenient description of the formation of patterns and transitions between attractor patterns. The second part of this chapter is devoted to the Lotka-Volterra-Haken amplitude equations. These equations describe pattern formation in the aforementioned reduced amplitude space. The Lotka-Volterra-Haken amplitude equations correspond to a general class of amplitude equations in the theory of pattern formation. They will be used in all applications of this book to describe the formation of brain and body activity patterns in humans and animals (i.e., “perception”, “cognition”, and “behavior”).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Begon, J.L. Harper, C.R. Townsend, Ecology, Individuals, Populations and Communities (Blackwell Scientific Publications, Boston, 1990)

    Google Scholar 

  2. M. Bestehorn, R. Friedrich, Rotationally invariant order parameter equations for natural patterns in nonequilibrium systems. Phys. Rev. E 59, 2642–2652 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Bestehorn, H. Haken, Associative memory of a dynamical system: an example of the convection instability. Z. Phys. B 82, 305–308 (1991)

    Article  ADS  Google Scholar 

  4. M. Bestehorn, R. Friedrich, H. Haken, Two-dimensional traveling wave patterns in nonequilibrium systems. Z. Phys. B 75, 265–274 (1989)

    Article  ADS  Google Scholar 

  5. L.L. Bonilla, C.J. Perez-Vicente, R. Spigler, Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions. Phys. D 113, 79–97 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. P.C. Bressloff, Neural networks, lattice instantons, and the anti-integrable limit. Phys. Rev. Lett. 75, 962–965 (1995)

    Article  ADS  Google Scholar 

  7. P.C. Bressloff, P. Roper, Stochastic dynamics of the diffusive Haken model with subthreshold periodic forcing. Phys. Rev. E 58, 2282–2287 (1998)

    Article  ADS  Google Scholar 

  8. M.C. Cross, P.C. Hohenberg, Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    Article  ADS  MATH  Google Scholar 

  9. G.C. Cruywagen, P.K. Maini, J.D. Murray, Biological pattern formation on two-dimensional spatial domains: a nonlinear bifurcation analysis. SIAM J. Appl. Math. 57, 1485–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Daffertshofer, H. Haken, A new approach to recognition of deformed patterns. Pattern Recogn. 27, 1697–1705 (1994)

    Article  Google Scholar 

  11. F.J. Diedrich, W.H. Warren, Why change gaits? Dynamics of the walk-run transition. J. Exp. Psychol. - Hum. Percept. Perform. 21, 183–202 (1995)

    Article  Google Scholar 

  12. V. Dufiet, J. Boissonade, Dynamics of Turing pattern monolayers close to onset. Phys. Rev. E 53, 4883–4892 (1996)

    Article  ADS  Google Scholar 

  13. A.K. Dutt, Turing pattern amplitude equations for a model glycolytic reaction-diffusion system. J. Mater. Chem. 48, 841–855 (2010)

    MathSciNet  MATH  Google Scholar 

  14. R.E. Ecke, H. Haucke, Y. Maeno, J.C. Wheatley, Critical dynamics at a Hopf bifurcation to oscillatory Rayleigh-Benard convection. Phys. Rev. A 33, 1870–1878 (1986)

    Article  ADS  Google Scholar 

  15. B. Fiedler, T. Gedeon, A class of convergent neural network dynamics. Phys. D 111, 288–294 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. T.D. Frank, On a multistable competitive network model in the case of an inhomogeneous growth rate spectrum with an application to priming. Phys. Lett. A 373, 4127–4133 (2009)

    Article  ADS  MATH  Google Scholar 

  17. T.D. Frank, New perspectives on pattern recognition algorithm based on Haken’s synergetic computer network, in Perspective on Pattern Recognition ed. by M.D. Fournier, pp. 153–172, Chap. 7 (Nova Publ., New York, 2011)

    Google Scholar 

  18. T.D. Frank, Rate of entropy production as a physical selection principle for mode-mode transitions in non-equilibrium systems: with an application to a non-algorithmic dynamic message buffer. Eur. J. Sci. Res. 54, 59–74 (2011)

    Google Scholar 

  19. T.D. Frank, Multistable pattern formation systems: candidates for physical intelligence. Ecol. Psychol. 24, 220–240 (2012)

    Article  Google Scholar 

  20. T.D. Frank, Psycho-thermodynamics of priming, recognition latencies, retrieval-induced forgetting, priming-induced recognition failures and psychopathological perception, in Psychology of Priming ed. by N. Hsu, Z. Schütt, Chap. 9 (Nova Publ., New York, 2012), pp. 175–204

    Google Scholar 

  21. T.D. Frank, Secondary bifurcations in a Lotka-Volterra model for n competitors with applications to action selection and compulsive behaviors. Int. J. Bifurcation Chaos 24, article 1450156 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. T.D. Frank, Domains of attraction of walking and running attractors are context dependent: illustration for locomotion on tilted floors. Int. J. Sci. World 3, 81–90 (2015)

    Article  ADS  Google Scholar 

  23. T.D. Frank, On the interplay between order parameter and system parameter dynamics in human perceptual-cognitive-behavioral systems. Nonlinear Dynamics Psychol. Life Sci. 19, 111–146 (2015)

    ADS  MathSciNet  Google Scholar 

  24. T.D. Frank, Formal derivation of Lotka-Volterra-Haken amplitude equations of task-related brain activity in multiple, consecutively preformed tasks. Int. J. Bifurcation Chaos 10, article 1650164 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. T.D. Frank, Perception adapts via top-down regulation to task repetition: a Lotka-Volterra-Haken modelling analysis of experimental data. J. Integr. Neurosci. 15, 67–79 (2016)

    Article  Google Scholar 

  26. T.D. Frank, A synergetic gait transition model for hysteretic gait transitions from walking to running. J. Biol. Syst. 24, 51–61 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. T.D. Frank, Determinism of behavior and synergetics, in Encyclopedia of Complexity and Systems Science, ed. by R.A. Meyers, Chap. 695 (Springer, Berlin, 2018)

    Google Scholar 

  28. T.D. Frank, J. O’Leary, Motion-induced blindness and the spinning dancer paradigm: a neuronal network approach based on synergetics, in Horizon in Neuroscience Research, ed. by A. Costa, E. Villalba, vol. 35, Chap. 2 (Nova Publ., New York, 2018), pp. 51–80

    Google Scholar 

  29. T.D. Frank, M.J. Richardson, S.M. Lopresti-Goodman, M.T. Turvey, Order parameter dynamics of body-scaled hysteresis and mode transitions in grasping behavior. J. Biol. Phys. 35, 127–147 (2009)

    Article  Google Scholar 

  30. T.D. Frank, J. van der Kamp, G.J.P. Savelsbergh, On a multistable dynamic model of behavioral and perceptual infant development. Dev. Psychobiol. 52, 352–371 (2010)

    Article  Google Scholar 

  31. R.W. Frischholz, F.G. Boebel, K.P. Spinner, Face recognition with the synergetic computer, in Proceedings of the First International Conference on Applied Synergetics and Synergetic Engineering (Frauenhofer Institute IIS., Erlangen, 1994), pp. 100–106

    Google Scholar 

  32. A. Fuchs, H. Haken, Pattern recognition and associative memory as dynamical processes in a synergetic system. I. Translational invariance, selective attention and decomposition of scene. Biol. Cybern. 60, 17–22 (1988)

    Google Scholar 

  33. G. Gambino, M.L. Lombardo, M. Sammartino, Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion. Math. Comput. Simul. 82, 1112–1132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. G. Gambino, M.C. Lombardo, M. Sammartino, V. Sciacca, Turing pattern formation in the Brusselator system with nonlinear diffusion. Phys. Rev. E 88, article 042925 (2013)

    Google Scholar 

  35. M.E. Gilpin, Limit cycles in competition communities. Am. Nat. 109, 51–60 (1975)

    Article  Google Scholar 

  36. N.S. Goel, S.C. Maitra, E.W. Montroll, On the Volterra and other nonlinear models of interacting populations. Rev. Mod. Phys. 43, 231–276 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  37. N.J. Gotelli, A Primer of Ecology (Sinauer Associates, Sunderland, 2008)

    Google Scholar 

  38. T.M. Griffin, R. Kram, S.J. Wickler, D.F. Hoyt, Biomechanical and energetic determinants of the walk-trot transition in horses. J. Exp. Biol. 207, 4215–4223 (2004)

    Article  Google Scholar 

  39. H. Haken, Light: Laser Light Dynamics (North Holland, Amsterdam, 1991)

    Google Scholar 

  40. H. Haken, Synergetic Computers and Cognition (Springer, Berlin, 1991)

    Book  MATH  Google Scholar 

  41. H. Haken, Synergetics: Introduction and Advanced Topics (Springer, Berlin, 2004)

    Book  Google Scholar 

  42. M. Hirsch, B. Baird, Computing with dynamic attractors in neural networks. Bio Syst. 34, 173–195 (1995)

    Google Scholar 

  43. S. Kim, T.D. Frank, Body-scaled perception is subjected to adaptation when repetitively judging opportunities for grasping. Exp. Brain Res. 234, 2731–2743 (2016)

    Article  Google Scholar 

  44. S. Kim, T.D. Frank, Correlations between hysteretic categorical and continuous judgments of perceptual stimuli supporting a unified dynamical systems approach to perception. Perception 47, 44–66 (2018)

    Article  Google Scholar 

  45. S.M. Lopresti-Goodman, M.T. Turvey, T.D. Frank, Behavioral dynamics of the affordance “graspable”. Atten. Percept. Psychophys. 73, 1948–1965 (2011)

    Google Scholar 

  46. A.J. Lotka, The growth of mixed populations. two species competing for a common food supply. J. Wash. Acad. Sci. 23, 461–469 (1932)

    Google Scholar 

  47. R.M. May, W.J. Leonard, Nonlinear aspects of competition between three species. SIAM J. Appl. Math. 29, 243–253 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  48. R. Müller, D. Cerra, P. Reinartz, Synergetics framework for hyperspectral image classification, in The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2013 (International Society for Photogrammetry and Remote Sensing, Hannover, 2013), pp. 257–262

    Article  Google Scholar 

  49. A.C. Newell, J.A. Whitehead, Finite bandwidth, finite amplitude convection. J. Fluid Mech. 38, 279–303 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. G. Nicolis, Introduction to Nonlinear Sciences (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  51. A. Pansuwan, C. Rattanakul, Y. Lenbury, D.J. Wollkind, L. Harrison, L. Rajapakse, K. Cooper, Nonlinear stability analysis of pattern formation on solid surfaces during ion-sputtered erosion. Math. Comput. Model. 41, 939–964 (2005)

    Article  MATH  Google Scholar 

  52. B. Pena, C. Perez-Garcia, Selection and competition of Turing patterns. Europhys. Lett. 51, 300–306 (2000)

    Article  ADS  Google Scholar 

  53. M.I. Rabinovich, M.K. Muezzinoghu, I. Strigo, A. Bystritsky, Dynamic principles of emotion-cognition interaction: mathematical images of mental disorders. PLoS One 5, e12547 (2010)

    Article  ADS  Google Scholar 

  54. C. Rattanakul, Y. Lenbury, D.J. Wollkind, V. Chatsudthipong, Weakly nonlinear analysis of a model of signal transduction pathway. Nonlinear Anal. 71, e1620–e1625 (2009)

    Article  MATH  Google Scholar 

  55. M. Schmutz, W. Banzhaf, Robust competitive networks. Phys. Rev. A 45, 4132–4145 (1992)

    Article  ADS  Google Scholar 

  56. L.A. Segal, The nonlinear interaction of two disturbances in thermal convection problem. J. Fluid Mech. 14, 97–114 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  57. L.A. Segal, The nonlinear interaction of a finite number of disturbances to a layer of fluid heated from below. J. Fluid Mech. 21, 359–384 (1965)

    Article  ADS  Google Scholar 

  58. H. Shimizu, Y. Yamaguchi, Synergetic computer and holonics: information dynamics of a semantic computer. Phys. Scripta 36, 970–985 (1987)

    Article  ADS  Google Scholar 

  59. L.E. Stephenson, D.J. Wollkind, Weakly nonlinear analysis of one-dimensional Turing pattern formation in activator-inhibitor/immobilizer model system. J. Math. Biol. 33, 771–815 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  60. Y. Sumino, K. Yoshikawa, Self-motion of an oil droplet: a simple physiochemical model of active Brownian motion. Chaos 18, 026106 (2008)

    Article  ADS  Google Scholar 

  61. W. Wang, Y. Lin, H. Wang, H. Liu, Y. Tan, Pattern selection in an epidemic model with self and cross diffuion. J. Biol. Syst. 19, 19–31 (2011)

    Article  MATH  Google Scholar 

  62. J. Wesfreid, Y. Pomeau, M. Dubois, C. Normand, P. Berge, Critical effects in Rayleig-Benard convection. Le J. de Phys. Lett. 7, 726–731 (1978)

    Google Scholar 

  63. D.J. Wollkind, L.E. Stephenson, Chemical Turing pattern formation analyses: comparison of theory with experiment. SIAM J. Appl. Math. 61, 387–431 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  64. A.A. Yudashkin, Bifurcations of steady-state solutions in the synergetic neural network and control of pattern recognition. Auto Remote Control 57, 1647–1653 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frank, T. (2019). Pattern Formation. In: Determinism and Self-Organization of Human Perception and Performance. Springer Series in Synergetics. Springer, Cham. https://doi.org/10.1007/978-3-030-28821-1_4

Download citation

Publish with us

Policies and ethics