Skip to main content

Repetitions in Infinite Palindrome-Rich Words

  • Conference paper
  • First Online:
  • 313 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11682))

Abstract

Rich words are those containing the maximum possible number of distinct palindromes. Several characteristic properties of rich words have been studied; yet the analysis of repetitions in rich words still involves some interesting open problems. We consider lower bounds on the repetition threshold of infinite rich words over 2- and 3-letter alphabets, and construct a candidate infinite rich word over the alphabet \(\varSigma _2=\{0,1\}\) with a small critical exponent of \(2+\sqrt{2}/2\). This represents the first progress on an open problem of Vesti from 2017.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Repository: https://github.com/aseemrb/Walnut/.

  2. 2.

    URL: https://github.com/aseemrb/Walnut/blob/master/Command Files/rich2.txt.

  3. 3.

    URL: https://github.com/aseemrb/research-scripts/blob/master/palindromes/palin.cpp.

References

  1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MathSciNet  Google Scholar 

  2. Baranwal, A.R., Shallit, J.: Critical exponent of infinite balanced words via the Pell number system. Preprint: https://arxiv.org/abs/1902.00503 (2019)

  3. Blondin Massé, A., Brlek, S., Labbé, S., Vuillon, L.: Palindromic complexity of codings of rotations. Theoret. Comput. Sci. 412, 6455–6463 (2011)

    Article  MathSciNet  Google Scholar 

  4. Brlek, S., Hamel, S., Nivat, M., Reutenauer, C.: On the palindromic complexity of infinite words. Int. J. Found. Comput. Sci. 15, 293–306 (2004)

    Article  MathSciNet  Google Scholar 

  5. Bucci, M., De Luca, A., Glen, A., Zamboni, L.Q.: A new characteristic property of rich words. Theoret. Comput. Sci. 410, 2860–2863 (2009)

    Article  MathSciNet  Google Scholar 

  6. Chen, G., Puglisi, S.J., Smyth, W.F.: Fast & practical algorithms for computing all the runs in a string. In: Ma, B., Zhang, K. (eds.) CPM 2007, LNCS, vol. 4580, pp. 307–315. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73437-6_31

  7. Crochemore, M., Ilie, L.: Computing longest previous factor in linear time and applications. Inform. Process. Lett. 106(2), 75–80 (2008)

    Article  MathSciNet  Google Scholar 

  8. Currie, J., Rampersad, N.: A proof of Dejean’s conjecture. Math. Comput. 80(274), 1063–1070 (2011)

    Article  MathSciNet  Google Scholar 

  9. de Luca, A., Glen, A., Zamboni, L.Q.: Rich, Sturmian, and trapezoidal words. Theoret. Comput. Sci. 407, 569–573 (2008)

    Article  MathSciNet  Google Scholar 

  10. Dejean, F.: Sur un théorème de Thue. J. Combin. Theory. Ser. A 13(1), 90–99 (1972)

    Article  MathSciNet  Google Scholar 

  11. Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. Eur. J. Comb. 30, 510–531 (2009)

    Article  MathSciNet  Google Scholar 

  12. Groult, R., Prieur, E., Richomme, G.: Counting distinct palindromes in a word in linear time. Inform. Process. Lett. 110, 908–912 (2010)

    Article  MathSciNet  Google Scholar 

  13. Guo, C., Shallit, J., Shur, A.M.: Palindromic rich words and run-length encodings. Inform. Process. Lett. 116, 735–738 (2016)

    Article  MathSciNet  Google Scholar 

  14. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  15. Mousavi, H.: Automatic theorem proving in Walnut. Preprint: https://arxiv.org/abs/1603.06017 (2016)

  16. Ostrowski, A.: Bemerkungen zur Theorie der diophantischen Approximationen. Abh. Math. Semin. Univ. Hamburg 1(1), 77–98 (1922)

    Article  MathSciNet  Google Scholar 

  17. Pelantová, E., Starosta, Š.: Languages invariant under more symmetries: overlapping factors versus palindromic richness. Discrete Math. 313, 2432–2445 (2013)

    Article  MathSciNet  Google Scholar 

  18. Pelantová, E., Starosta, Š.: Constructions of words rich in palindromes and pseudopalindromes. Discrete Math. Theoret. Comput. Sci. 18, Paper #16 (2016). https://dmtcs.episciences.org/2202

  19. Rampersad, N., Shallit, J., Vandomme, E.: Critical exponents of infinite balanced words. Theoret. Comput, Sci. 777, 454–463 (2018)

    Article  MathSciNet  Google Scholar 

  20. Rao, M.: Last cases of Dejean’s conjecture. Theoret. Comput. Sci. 412(27), 3010–3018 (2011)

    Article  MathSciNet  Google Scholar 

  21. Rote, G.: Sequences with subword complexity \(2n\). J. Number Theory 46, 196–213 (1994)

    Article  MathSciNet  Google Scholar 

  22. Rubinchik, M., Shur, A.M.: EERTREE: an efficient data structure for processing palindromes in strings. In: Lipták, Z., Smyth, W.F. (eds.) IWOCA 2015. LNCS, vol. 9538, pp. 321–333. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29516-9_27

    Chapter  Google Scholar 

  23. Schaeffer, L., Shallit, J.: Closed, palindromic, rich, privileged, trapezoidal, and balanced words in automatic sequences. Electronic J. Combinatorics 23, 1–25 (2016)

    Google Scholar 

  24. Vesti, J.: Extensions of rich words. Theoret. Comput. Sci. 548, 14–24 (2014)

    Article  MathSciNet  Google Scholar 

  25. Vesti, J.: Rich square-free words. Theoret. Comput. Sci. 687, 48–61 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to the referees for their suggestions.

After our paper was submitted, we learned from Edita Pelantová that our word r is a complementary symmetric Rote word [21], and hence by [3, 18] it follows that \(\mathbf r\) is rich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aseem R. Baranwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baranwal, A.R., Shallit, J. (2019). Repetitions in Infinite Palindrome-Rich Words. In: Mercaş, R., Reidenbach, D. (eds) Combinatorics on Words. WORDS 2019. Lecture Notes in Computer Science(), vol 11682. Springer, Cham. https://doi.org/10.1007/978-3-030-28796-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28796-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28795-5

  • Online ISBN: 978-3-030-28796-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics