Skip to main content

Abelian Properties of Words

  • Conference paper
  • First Online:
Book cover Combinatorics on Words (WORDS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11682))

Included in the following conference series:

Abstract

Abelian properties of words is a widely studied field in combinatorics on words. Two finite words are abelian equivalent if for each letter they contain the same numbers of occurrences of this letter. In this paper, we give a short overview of some directions of research on abelian properties of words, and discuss in more detail two new problems: small abelian complexity of two-dimensional words, and abelian subshifts.

Partially supported by Russian Foundation of Basic Research (grant 18-31-00118).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamczewski, B.: Balances for fixed points of primitive substitutions. Theor. Comput. Sci. 307(1), 47–75 (2003)

    Article  MathSciNet  Google Scholar 

  2. Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité \(2n+1\). Bull. Soc. Math. France 119, 199–215 (1991)

    Article  MathSciNet  Google Scholar 

  3. Avgustinovich, S., Cassaigne, J., Karhumäki, J., Puzynina, S., Saarela, A.: On abelian saturated infinite words. Theoret. Comput. Sci. (to appear). https://doi.org/10.1016/j.tcs.2018.05.013

  4. Avgustinovich, S., Karhumäki, J., Puzynina, S.: On abelian versions of critical factorization theorem. RAIRO - Theor. Inf. Applic. 46, 3–15 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bark, J., Varju, P.: Partitioning the positive integers to seven beatty sequences. Indag. Math. 14(2), 149–161 (2003)

    Article  MathSciNet  Google Scholar 

  6. Berthé, V., Tijdeman, R.: Balance properties of multi-dimensional words. Theor. Comput. Sci. 273, 197–224 (2002)

    Article  MathSciNet  Google Scholar 

  7. Berthé, V., Vuillon, L.: Tilings and rotations: a two-dimensional generalization of Sturmian sequences. Discrete Math. 223, 27–53 (2000)

    Article  MathSciNet  Google Scholar 

  8. Blanchet-Sadri, F., Fox, N., Rampersad, N.: On the asymptotic Abelian complexity of morphic words. Adv. Appl. Math. 61, 46–84 (2014)

    Article  MathSciNet  Google Scholar 

  9. Cassaigne, J.: Double sequences with complexity \(mn+1\). J. Autom. Lang. Comb. 4(3), 153–170 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Cassaigne, J., Richomme, G., Saari, K., Zamboni, L.Q.: Avoiding abelian powers in binary words with bounded abelian complexity. Int. J. Found. Comput. Sci. 22(4), 905–920 (2011)

    Article  MathSciNet  Google Scholar 

  11. Charlier, E., Harju, T., Puzynina, S., Zamboni, L.Q.: Abelian bordered factors and periodicity. Eur. J. Comb. 51, 407–418 (2016)

    Article  MathSciNet  Google Scholar 

  12. Christodoulakis, M., Christou, M., Crochemore, M., Iliopoulos, C.S.: Abelian borders in binary words. Discrete Appl. Math. 171, 141–146 (2014)

    Article  MathSciNet  Google Scholar 

  13. Constantinescu, S., Ilie, L.: Fine and Wilf’s theorem for abelian periods. Bull. Eur. Assoc. Theor. Comput. Sci. 89, 167–170 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Coven, E.M., Hedlund, G.A.: Sequences with minimal block growth. Math. Syst. Theory 7, 138–153 (1973)

    Article  MathSciNet  Google Scholar 

  15. Currie, J., Rampersad, N.: Recurrent words with constant Abelian complexity. Adv. Appl. Math. 47, 116–124 (2011)

    Article  MathSciNet  Google Scholar 

  16. Cyr, V., Kra, B.: Nonexpansive \(\mathbb{Z}^2\)-subdynamics and Nivat’s conjecture. Trans. Am. Math. Soc. 367(9), 6487–6537 (2015)

    Google Scholar 

  17. de Luca, A.: Sturmian words: structure, combinatorics, and their arithmetics. Theor. Comput. Sci. 183, 45–82 (1997)

    Article  MathSciNet  Google Scholar 

  18. Dekking, F.M.: Strongly non-repetitive sequences and progression-free sets. J. Comb. Theory Ser. A 27(2), 181–185 (1979)

    Article  Google Scholar 

  19. Didier, G.: Caractérisation des \(N\)-écritures et application à l’étude des suites de complexité ultimement \(n + c^{ste}\). Theoret. Comp. Sci. 215(1–2), 31–49 (1999)

    Article  Google Scholar 

  20. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions by de Luca and Rauzy. Theor. Comput. Sci. 255, 539–553 (2001)

    Article  Google Scholar 

  21. Durand, F., Rigo, M.: Multidimensional extension of the Morse-Hedlund theorem. Eur. J. Comb. 34(2), 391–409 (2013)

    Article  MathSciNet  Google Scholar 

  22. Entringer, R.C., Jackson, D.E., Schatz, J.A.: On nonrepetitive sequences. J. Comb. Theory (A) 16, 159–164 (1974)

    Article  MathSciNet  Google Scholar 

  23. Epifanio, C., Koskas, M., Mignosi, F.: On a conjecture on bi-dimensional words. Theor. Comput. Sci. 299, 123–150 (2003)

    Article  Google Scholar 

  24. Erdös, P.: Some unsolved problems. Magyar Tud. Akad. Mat. Kutató Int. Közl. 6, 221–254 (1961)

    Google Scholar 

  25. Evdokimov, A.A.: Strongly asymmetric sequences generated by a finite number of symbols. Dokl. Akad. Nauk SSSR 179, 1268–1271 (1968)

    MathSciNet  MATH  Google Scholar 

  26. Ferenczi, S., Mauduit, C.: Transcendence of numbers with a low complexity expansion. J. Number Theory 67, 146–161 (1997)

    Article  MathSciNet  Google Scholar 

  27. Fici, G., Mignosi, F., Shallit, J.: Abelian-square-rich words. Theor. Comput. Sci. 684, 29–42 (2017)

    Article  MathSciNet  Google Scholar 

  28. Fici, G., et al.: Abelian powers and repetitions in Sturmian words. Theor. Comput. Sci. 635, 16–34 (2016)

    Article  MathSciNet  Google Scholar 

  29. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math. Soc. 16, 109–114 (1965)

    Article  MathSciNet  Google Scholar 

  30. Fraenkel, A.S.: Complementing and exactly covering sequences. J. Comb. Theory Ser. A 14(1), 8–20 (1973)

    Article  MathSciNet  Google Scholar 

  31. Hejda, T., Steiner, W., Zamboni, L.Q.: What is the abelianization of the tribonacci shift? In: Workshop on Automatic Sequences, Liège, May 2015

    Google Scholar 

  32. Hubert, P.: Suites équilibrées. Theor. Comput. Sci. 242(1–2), 91–108 (2000)

    Article  Google Scholar 

  33. Kaboré, I., Tapsoba, T.: Combinatoire de mots récurrents de complexité \(n + 2\). ITA 41(4), 425–446 (2007)

    MATH  Google Scholar 

  34. Karhumäki, J., Puzynina, S., Whiteland, M.: On abelian subshifts. In: DLT 2018, pp. 453–464 (2018)

    Chapter  Google Scholar 

  35. Kari, J. Moutot, E.: Decidability and Periodicity of Low Complexity Tilings. https://arxiv.org/abs/1904.01267

  36. Kari, J., Szabados, M.: An algebraic geometric approach to nivat’s conjecture. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015, Part II. LNCS, vol. 9135, pp. 273–285. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_22

    Chapter  Google Scholar 

  37. Keränen, V.: Abelian squares are avoidable on 4 letters. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 41–52. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55719-9_62

    Chapter  Google Scholar 

  38. Keränen, V.: New abelian square-free DT0L-languages over 4 letters (2003, manuscript)

    Google Scholar 

  39. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, New York (1995)

    Book  Google Scholar 

  40. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  41. Masáková, Z., Pelantová, E.: Enumerating abelian returns to prefixes of sturmian words. In: Karhumäki, J., Lepistö, A., Zamboni, L. (eds.) WORDS 2013. LNCS, vol. 8079, pp. 193–204. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40579-2_21

    Chapter  MATH  Google Scholar 

  42. Morse, M., Hedlund, G.: Symbolic dynamics. Am. J. Math. 60, 815–866 (1938)

    Article  MathSciNet  Google Scholar 

  43. Morse, M., Hedlund, G.: Symbolic dynamics II: sturmian sequences. Am. J. Math. 62, 1–42 (1940)

    Article  Google Scholar 

  44. Nivat M.: Invited talk at ICALP’97 (1997)

    Google Scholar 

  45. Pansiot, J.-J.: Complexité des facteurs des mots infinis engendrés par morphismes itérés. In: Paredaens, J. (ed.) ICALP 1984. LNCS, vol. 172, pp. 380–389. Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-13345-3_34

    Chapter  Google Scholar 

  46. Puzynina, S.: Small abelian complexity of two-dimensional infinite words (submitted)

    Google Scholar 

  47. Puzynina, S., Zamboni, L.Q.: Abelian returns in sturmian words. J. Comb. Theory Ser. A 120(2), 390–408 (2013)

    Article  MathSciNet  Google Scholar 

  48. Quas, A., Zamboni, L.Q.: Periodicity and local complexity. Theor. Comput. Sci. 319(1–3), 229–240 (2004)

    Article  MathSciNet  Google Scholar 

  49. Rampersad, N., Rigo, M., Salimov, P.: A note on abelian returns in rotation words. Theor. Comput. Sci. 528, 101–107 (2014)

    Article  MathSciNet  Google Scholar 

  50. Rao, M., Rosenfeld, M.: Avoidability of long k-abelian repetitions. Math. Comput. 85(302), 3051–3060 (2016)

    Article  MathSciNet  Google Scholar 

  51. Rao, M., Rosenfeld, M.: Avoiding two consecutive blocks of same size and same sum over \(\mathbb{Z}^2\). SIAM J. Discrete Math. 32(4), 2381–2397 (2018)

    Article  MathSciNet  Google Scholar 

  52. Richomme, G., Saari, K., Zamboni, L.Q.: Abelian complexity in minimal subshifts. J. London Math. Soc. 83, 79–95 (2011)

    Article  MathSciNet  Google Scholar 

  53. Richomme, G., Saari, K., Zamboni, L.Q.: Balance and abelian complexity of the tribonacci word. Adv. Appl. Math. 45, 212–231 (2010)

    Article  MathSciNet  Google Scholar 

  54. Rigo, M., Salimov, P., Vandomme, E.: Some properties of abelian return words. J. Integer Seq. 16 (2013). Article number 13.2.5

    Google Scholar 

  55. Saarela, A.: Ultimately constant abelian complexity of infinite words. J. Autom. Lang. Comb. 14(3–4), 255–258 (2009)

    MathSciNet  MATH  Google Scholar 

  56. Simpson, J.: An abelian periodicity lemma. Theor. Comput. Sci. 656, 249–255 (2016)

    Article  MathSciNet  Google Scholar 

  57. Vuillon, L.: A characterization of Sturmian words by return words. Eur. J. Comb. 22, 263–275 (2001)

    Article  MathSciNet  Google Scholar 

  58. Whiteland, M.A.: Asymptotic abelian complexities of certain morphic binary words. J. Autom. Lang. Comb. 24(1), 89–114 (2019)

    MathSciNet  Google Scholar 

  59. Zamboni, L.Q.: Personal communication (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Puzynina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Puzynina, S. (2019). Abelian Properties of Words. In: Mercaş, R., Reidenbach, D. (eds) Combinatorics on Words. WORDS 2019. Lecture Notes in Computer Science(), vol 11682. Springer, Cham. https://doi.org/10.1007/978-3-030-28796-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28796-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28795-5

  • Online ISBN: 978-3-030-28796-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics