Skip to main content

Anatomy and Physiology of Ovarian Follicle

  • Chapter
  • First Online:
Pick Up and Oocyte Management

Abstract

Female reproductive system is a place of origin of a new human life. It produces female gametes, gives a supportive environment for fertilization and embryo development, ultimately it nurtures a growing fetus for 40 weeks of gestation. Women are born with two ovaries placed on either sides of the uterus in the abdomen. They have a complex role on regulating menstrual cycle, producing hormones and monthly giving a single mature oocyte that is ready for fertilization, subsequently giving a couple a chance for pregnancy. It is the intention of this chapter to describe a structure of a single follicle that is a place of human oocyte origin, its development through various stages of woman’s life and menstrual cycle. Also, we will explain the effect of hormones on ovarian tissue and follicle development and how they affect oocyte maturation, what happens to the follicle after the rupture, and what is the significance of various growth factors and chemical signals in physiology of the follicle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sadler TW. Langman’s medical embryology. 12th ed. Wolters Kluwer, Lippincott Williams & Wilkins, printed in China; 2011. 384 pp.

    Google Scholar 

  2. Vaskivuo TE, Anttonen M, Herva R, Billig H, Dorland M, Velde ER, Stenback F, Heikinheimo M, Tapanainen JS. Survival of human ovarian follicles from fetal to adult life: apoptosis, apoptosis-related proteins, and transcription factor GATA-4. J Clin Endocrinol Metabol. 2001;86(7):3421–9.

    CAS  Google Scholar 

  3. Coward K, Wells D. Textbook of clinical embryology. Cambridge: Cambridge University Press; 2013. 391 pp.

    Google Scholar 

  4. Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krishner RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103(2):303–16.

    PubMed  Google Scholar 

  5. Erickson GF. Glob Libr Women’s Med. Follicle growth and development. (ISSN: 1756-2228) 2008. https://doi.org/10.3843/GLOWM.10289.

  6. Atwood CS, Meethal SV. The spatiotemporal hormonal orchestration of human folliculogenesis, early embryogenesis and blastocyst implantation. Mol Cell Endocrinol. 2016;430:33–48. https://doi.org/10.1016/j.mce.2016.03.039.

    Article  PubMed  CAS  Google Scholar 

  7. Gougeon A. Human ovarian follicular development: from activation of resting follicles to preovulatory maturation. Ann Endocrinol. 2010;71:132–43.

    CAS  Google Scholar 

  8. Young JM, McNeilly AS. Theca: the forgotten cell of the ovarian follicle. Reproduction. 2010;140:489–504.

    PubMed  CAS  Google Scholar 

  9. McGee EA, Hsueh AJW. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21(2):200–14.

    PubMed  CAS  Google Scholar 

  10. Chang JR, Gougeon A, Erickson GF. Evidence for a neutrophil–interleukin-8 system in human folliculogenesis. Am J Obstet Gynecol. 1998;178(4):650–7.

    PubMed  CAS  Google Scholar 

  11. Matsuda F, Inoue N, Manabe N, Ohkura S. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J Reprod Dev. 2012;50(1):44–50.

    Google Scholar 

  12. Huang Z, Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol Hum Reprod. 2010;16(10):715–25.

    PubMed  CAS  Google Scholar 

  13. Rodgers RJ, Irvine-Rodgers HF. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod. 2010;82:1021–9.

    PubMed  CAS  Google Scholar 

  14. Ambekar AS, Nirujogi RS, Srikants SM, Chavan S, Kelkar DS, Hinduja I, Zaveri K, Keshava Prasad TS, Harsha HC, Pandey A, Mukherjee S. Proteomic analysis of human follicular fluid: a new perspective towards understanding folliculogenesis. J Proteome. 2013;87:68–77.

    CAS  Google Scholar 

  15. Jozwik M, Jozwik M, Teng C, Battaglia C. Amino acid, ammonia and urea concentrations in human pre-ovulatory ovarian follicular fluid. Hum Reprod. 2006;21(11):2776–82.

    PubMed  CAS  Google Scholar 

  16. Tamura H, Taksaki A, Taketami T, Tanabe M, Kizuka F, Lee L, Tamura I, Maekawa R, Asada H, Yamagata Y, Sugino N. Melatonin as a free radical scavenger in the ovarian follicle. Endocr J. 2013;60(1):1–13.

    Google Scholar 

  17. Makabe S, Naguro T, Stallone T. Oocyte–follicle cell interactions during ovarian follicle development, as seen by high resolution scanning and transmission electron microscopy in humans. Microsc Res Tech. 2006;69:436–49.

    PubMed  Google Scholar 

  18. Baerwald AR, Adams GP, Pierson RA. A new model for ovarian follicular development during the human menstrual cycle. Fertil Steril. 2003;80(1):116–22.

    PubMed  Google Scholar 

  19. Baerwald AR, Adams GP, Pierson RA. Ovarian antral folliculogenesis during the human menstrual cycle: a review. Hum Reprod Update. 2012;18(1):73–91.

    PubMed  Google Scholar 

  20. Fukuda M, Fukuda K, Andersen KY, Byskov AG. Characteristics of human ovulation in natural cycles correlated with age and achievement of pregnancy. Hum Reprod. 2001;16(12):2501–7.

    PubMed  CAS  Google Scholar 

  21. Al-Alem L, Puttabyatappa M, Rosewell K, Brannstrom M, Akin J, Boldt J, Muse K, Curry TE. Chemokine ligand 20: a signal for leukocyte recruitment during human ovulation? Endocrinology. 2015;156(9):3358–69.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Niswender GD, Juengel JL, Silva PJ, Rollyson MK, McIntush EW. Mechanisms controlling the function and life span of the corpus luteum. Physiol Rev. 2000;80(1):1–29.

    PubMed  CAS  Google Scholar 

  23. Stocco C, Telelria C, Gibori G. The molecular control of corpus luteum formation, function and regression. Endocr Rev. 2007;28(1):117–49.

    PubMed  CAS  Google Scholar 

  24. Elder K, Dale B. In-vitro fertilization. 3rd ed. Cambridge: Cambridge University Press; 2011. 277 pp.

    Google Scholar 

  25. Woodruff TK, Shea LD. A new hypothesis regarding ovarian follicle development: ovarian rigidity as a regulator of selection and health. J Assist Reprod Genet. 2011;28:3–6.

    PubMed  Google Scholar 

  26. Drummond A. The role of steroids in follicular growth. Reprod Biol Endocrinol. 2006;4:16.

    PubMed  PubMed Central  Google Scholar 

  27. Lebbe M, Taylor AE, Visser JA, Kirkman-Brown JC, Woodruff TK, Arlt W. The steroid metabolome in the isolated ovarian follicle and its response to androgen exposure and antagonism. Endocrinology. 2017;158(5):1474–85.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Kolibianakis EM, Papanikolaou EG, Fatemi HM, Devroey P. Estrogen and folliculogenesis: is one necessary for the other? Curr Opin Obstet Gynecol. 2005;17:249–53.

    PubMed  Google Scholar 

  29. Kawamura K, Cheng Y, Kawamura N, Takae S, Okada A, Kawagoe Y, Mulders S, Terada Y, Hsueh AJW. Pre-ovulatory LH/hCG surge decreases C-type natriuretic peptide secretion by ovarian granulosa cells to promote meiotic resumption of pre-ovulatory oocytes. Hum Reprod. 2011;26(11):3094–101.

    PubMed  CAS  Google Scholar 

  30. Humaidan P, Papanikolau EG, Kyrou D, Alsbjerg B, Polyzos NP, Devroey P, Fatemi HM. The luteal phase after GnRH-agonist triggering of ovulation: present and future perspectives. Reprod Biomed Online. 2012;24:134–41.

    PubMed  CAS  Google Scholar 

  31. Wallace WHB, Kelsey TW. Human ovarian reserve from conception to menopause. PLoS One. 2010;5(1):e8772.

    PubMed  PubMed Central  Google Scholar 

  32. De Vet A, Laven JSE, de Jong FH, Themmen APN, Fauser BCJM. Antimullerian hormone serum levels: a putative marker for ovarian aging. Fertil Steril. 2002;77(2):357–62.

    PubMed  Google Scholar 

  33. Weenen C, Laven JSE, von Bergh ARM, Cranfield M, Groome NP, Visser JA, Kramer P, Fauser BCJM, Themmen APN. Anti-Mullerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod. 2004;10(2):77–83.

    PubMed  CAS  Google Scholar 

  34. Grondahl ML, Nielsen ME, Dal Canto MB, Fadini R, Rasmussen IA, Westergaard LG, Kristensen SG, Andersen CY. Anti-Mullerian hormone remains highly expressed in human cumulus cells during the final stages of folliculogenesis. Reprod Biomed Online. 2011;22:389–98.

    PubMed  CAS  Google Scholar 

  35. Asensio JA, Cacares ARR, Pelegrina LT, Sanhuenza MA, Scotti L, Parborelli F, Laconi MR. Allopregnanolone alters follicular and luteal dynamics during the estrous cycle. Reprod Biol Endocrinol. 2018;16:35.

    PubMed  PubMed Central  Google Scholar 

  36. Andersen CY. Possible new mechanism of cortisol action in female reproductive organs: physiological implications of the free hormone hypothesis. J Endocrinol. 2002;173:211–7.

    PubMed  CAS  Google Scholar 

  37. Knight PG, Glister C. TGF-b superfamily members and ovarian follicle development. Reproduction. 2006;132:191–206.

    PubMed  CAS  Google Scholar 

  38. Richards AJ, Pangas SA. The ovary: basic biology and clinical implications. J Clin Invest. 2010;120(4):963–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Gilchrist RB. Recent insights into oocyte—follicle cell interactions provide opportunities for the development of new approaches to in vitro maturation. Reprod Fertil Dev. 2011;23:23–31.

    PubMed  Google Scholar 

  40. Giudice LS, Milki AA, Milkowski DA, Danasouri I. Human granulosa contain messenger ribonucleic acids encoding insulin-like growth factor-binding proteins (IGFBPs) and secrete IGFBPs in culture. Fertil Steril. 1991;56(3):475–80.

    PubMed  CAS  Google Scholar 

  41. Lagaly DV, Aad PY, Grado-Ahuir AJ, Hulsey LB, Spicer LJ. Role of adiponectin in regulating ovarian theca and granulosa cell function. Mol Cell Endocrinol. 2008;284:38–45.

    PubMed  CAS  Google Scholar 

  42. Guidice LC. Insulin like growth factor family in Graafian follicle development and function. J Soc Gynecol Investig. 2001;8(1):26–9.

    Google Scholar 

  43. Skinner M. Regulation of primordial follicle assembly and development. Hum Reprod Update. 2005;11(5):461–71.

    PubMed  Google Scholar 

  44. Dewailly D, Robin G, Peigne M, Decanter C, Pigny P, Catteau-Jonard S. Interactions between androgens, FSH, anti-Mullerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update. 2016;22(6):709–24.

    PubMed  CAS  Google Scholar 

  45. Hutt KJ, McLaughlin EA, Holland MK. Kit ligand and c-Kit have diverse roles during mammalian oogenesis and folliculogenesis. Mol Hum Reprod. 2006;12(2):61–9.

    PubMed  CAS  Google Scholar 

  46. Reddy P, Zheng W, Liu K. Mechanisms maintaining the dormancy and survival of mammalian primordial follicles. Trends Endocrinol Metab. 2009;21(2):96–103.

    PubMed  Google Scholar 

  47. Erickson GF, Shimasaki S. The physiology of folliculogenesis: the role of novel growth factors. Fertil Steril. 2001;76(5):943–9.

    PubMed  CAS  Google Scholar 

  48. Aaltonen J, Laitinen MP, Vuojolainen K, Jaatinen R, Horelli-Kuitunen N, Seppa L, Louhio H, Tuuri T, Sjober J, Butzow R, Hovatta O, Dale L, Ritvos O. Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J Clin Endocrinol Metabol. 1999;84(9):2744–50.

    CAS  Google Scholar 

  49. Pangas SA, Rademaker AW, Fishman DA, Woodruff TK. Localization of the activin signal transduction components in normal human ovarian follicles: implications for autocrine and paracrine signaling in the ovary. J Clin Endocrinol Metabol. 2002;87(6):2644–57.

    CAS  Google Scholar 

  50. Markholt S, Grondahl ML, Ernst EH, Yding Andersen C, Ernst E, Lykke-Hartmann K. Global gene analysis of oocytes from early stages in human folliculogenesis shows high expression of novel genes in reproduction. Mol Hum Reprod. 2013;18(2):96–110.

    Google Scholar 

  51. Oktem O, Urman B. Understanding follicular growth in vivo. Hum Reprod. 2010;25(12):2944–54.

    PubMed  Google Scholar 

  52. Kidder GM, Vanderhyden BC. Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can J Physiol Pharmacol. 2010;88:399–413.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Kidder GM, Mhawi AA. Gap junctions and ovarian folliculogenesis. Reproduction. 2002;123:613–20.

    PubMed  CAS  Google Scholar 

  54. Conti M, Hsieh M, Zamah AM, Oh JS. Novel signaling mechanisms in the ovary during oocyte maturation and ovulation. Mol Cell Endocrinol. 2012;356:65–73.

    PubMed  CAS  Google Scholar 

  55. Richani D, Gilchrist RB. The epidermal growth factor network: role in oocyte growth, maturation and developmental competence. Hum Reprod Update. 2018;24(1):1–14.

    PubMed  CAS  Google Scholar 

  56. Zamah AM, Hsieh M, Chen J, Vigne JL, Rosen MP, Cedars MI, Conti M. Human oocyte maturation is dependent on LH-stimulated accumulation of the epidermal growth factor-like growth factor, amphiregulin. Hum Reprod. 2010;25(10):2569–78.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Makinoda S, Waseda T, Tomizawa H, Fujii R. Granulocyte colony-stimulating factor (G-CSF) in the mechanism of human ovulation and its clinical usefulness. Curr Med Chem. 2008;15:604–13.

    PubMed  CAS  Google Scholar 

  58. Yamamoto S, Konishi I, Tsuruta Y, Nanbu K, Mandai M, Kuroda H, Matsushita K, Hamis AA, Yura Y, Mori T. Expression of vascular endothelial growth factor (VEGF) during folliculogenesis and corpus luteum formation in the human ovary. Gynecol Endocrinol. 1997;11:371–81.

    PubMed  CAS  Google Scholar 

  59. Yang DZ, Yang W, Li Y, He Z. Progress in understanding human ovarian folliculogenesis and its implications in assisted reproduction. J Assist Reprod Genet. 2013;30:213–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  60. McKenzie LJ, Pangas SA, Carson SA, kovanci E, Cisneros P, Buster JE, Amato P, Matzuk MM. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod. 2004;19(12):2869–74.

    PubMed  CAS  Google Scholar 

  61. Greb RR, Grieshaber K, Gromoll J, Sonntag B, Nieschlag E, Kiesel L, Simoni M. A common single nucleotide polymorphism in exon 10 of the human follicle stimulating hormone receptor is a major determinant of length and hormonal dynamics of the menstrual cycle. J Clin Endocrinol Metab. 2005;90(8):4866–72.

    PubMed  CAS  Google Scholar 

  62. Qiao J, Feng HL. Extra- and intraovarian factors in polycystic ovary syndrome: impact on oocyte maturation and embryo developmental competence. Hum Reprod Update. 2011;17(1):17–33.

    PubMed  Google Scholar 

  63. Smitz J, Dolmans MM, Donnez J, Fortune JE, Hovatta O, Jewgenow K, Picton HM, Plancha C, Shea LD, Stouffer RL, Telfer EE, Woodruff TK, Zelinski MB. Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Hum Reprod Update. 2010;16(4):395–414.

    PubMed  PubMed Central  CAS  Google Scholar 

  64. David A, Dolmans M, van Langendonckt A, Donnez J, Amorin CA. Immunohistochemical localization of growth factors after cryopreservation and 3 weeks’ xenotransplantation of human ovarian tissue. Fertil Steril. 2011;95(4):1241–6.

    PubMed  CAS  Google Scholar 

  65. Xiao S, Zhang J, Romero MM, Smith KN, Shea LD, Woodruff TK. In vitro follicle growth supports human oocyte meiotic maturation. Sci Rep. 2015;5:17323.

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Aziz AUR, Fu M, Deng J, Geng C, Luo Y, Lin B, Yu X, Liu B. A microfluidic device for culturing an encapsulated ovarian follicle. Micromachines. 2017;8:335.

    PubMed Central  Google Scholar 

  67. Joo S, Oh S, Sittadjody S, Opara EC, Jasckson JD, Lee SJ, Atala A. The effect of collagen hydrogel on 3D culture of ovarian follicles. Biomed Mater. 2016;11:065009.

    PubMed  Google Scholar 

  68. Dittrich R, Lotz L, Fehm T, Krussel J, von Wolff M, Toth B, van der Ven H, Schuring AN, Wurfel W, Hoffmann I, Beckmann MQ. Xenotransplantation of cryopreserved human ovarian tissue—a systematic review of MII oocyte maturation and discussion of it as a realistic option for restoring fertility after cancer treatment. Fertil Steril. 2015;103(6):1557–65.

    PubMed  Google Scholar 

  69. Kim SS, Soules MR, Battaglia DE. Follicular development, ovulation, and corpus luteum formation in cryopreserved human ovarian tissue after xenotransplantation. Fertil Steril. 2002;78(1):77–82.

    PubMed  Google Scholar 

  70. Shea LD, Woodruff TK, Shikanov A. Bioengineering the ovarian follicle environment. Annu Rev Biomed Eng. 2014;16:29–32.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dundović, M., Zibar, L., Malvasi, M. (2020). Anatomy and Physiology of Ovarian Follicle. In: Malvasi, A., Baldini, D. (eds) Pick Up and Oocyte Management. Springer, Cham. https://doi.org/10.1007/978-3-030-28741-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28741-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28740-5

  • Online ISBN: 978-3-030-28741-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics