Skip to main content

Fermented Dairy Products

  • Chapter
  • First Online:
How Fermented Foods Feed a Healthy Gut Microbiota

Abstract

The microbiota of fermented dairy products contributes to the safety, flavor, and organoleptic qualities of the products. Moreover, metabolites obtained from the fermentation process enhance the milk nutritive value and digestibility, whereas dairy microorganisms could be the perfect carriers for reseeding the gut microbiota. The structural food matrix of fermented milk facilitates the delivery of viable microorganisms to the intestinal tract. Fermented dairy products may be beneficial to human health by improving lactose intolerance symptoms and for the production of bioactive compounds such as vitamins, gamma-amino butyric acid, exopolysaccharides, and bioactive peptides, among others. Also, fermented dairy products contribute to the modulation of the gut microbiota and the prevention of infections, inflammation, and cardiometabolic diseases. Furthermore, fermented dairy products constitute the hallmark of probiotics supply in the food market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adegboye, A. R., Christensen, L. B., Holm-Pedersen, P., Avlund, K., Boucher, B. J., & Heitmann, B. L. (2012). Intake of dairy products in relation to periodontitis in older Danish adults. Nutrients, 4(9), 1219–1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akbari, E., Asemi, Z., Kakhaki, R. D., Bahmani, F., Kouchaki, E., Tamtaji, O. R., Hamidi, G. A., & Salami, M. (2016). Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Frontiers in Aging Neuroscience, 8, 256.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvaro, E., Andrieux, C., Rochet, V., Rigottier-Gois, L., Lepercq, P., Sutren, M., Galan, P., Duval, Y., Juste, C., & Dore, J. (2007). Composition and metabolism of the intestinal microbiota in consumers and non-consumers of yogurt. The British Journal of Nutrition, 97(1), 126–133.

    Article  CAS  PubMed  Google Scholar 

  • Arqués, J. L., Rodríguez, E., Langa, S., Landete, J. M., & Medina, M. (2015). Antimicrobial activity of lactic acid bacteria in dairy products and gut: Effect on pathogens. BioMed Research International, 2015, 584183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arth, A., Kancherla, V., Pachon, H., Zimmerman, S., Johnson, Q., & Oakley, G. P., Jr. (2016). A 2015 global update on folic acid-preventable spina bifida and anencephaly. Birth Defects Research. Part A, Clinical and Molecular Teratology, 106(7), 520–529.

    Article  CAS  PubMed  Google Scholar 

  • Aryana, K. J., & Olson, D. W. (2017). A 100-year review: Yogurt and other cultured dairy products. Journal of Dairy Science, 100(12), 9987–10013.

    Article  CAS  PubMed  Google Scholar 

  • Atta, C. A., Fiest, K. M., Frolkis, A. D., Jette, N., Pringsheim, T., St Germaine-Smith, C., Rajapakse, T., Kaplan, G. G., & Metcalfe, A. (2016). Global birth prevalence of spina bifida by folic acid fortification status: A systematic review and meta-analysis. American Journal of Public Health, 106(1), e24–e34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Azcarate-Peril, M. A., Ritter, A. J., Savaiano, D., Monteagudo-Mera, A., Anderson, C., Magness, S. T., & Klaenhammer, T. R. (2017). Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proceedings of the National Academy of Sciences of the United States of America, 114(3), E367–E375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bambury, A., Sandhu, K., Cryan, J. F., & Dinan, T. G. (2018). Finding the needle in the haystack: Systematic identification of psychobiotics. British Journal of Pharmacology, 175, 4430–4438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beermann, C., & Hartung, J. (2013). Physiological properties of milk ingredients released by fermentation. Food & Function, 4(2), 185–199.

    Article  CAS  Google Scholar 

  • BNF. (2015). Healthy eating. Retrieved March 20, 2015, from http://www.nutrition.org.uk/healthyliving/healthyeating.html

  • Bourrie, B. C., Willing, B. P., & Cotter, P. D. (2016). The microbiota and health promoting characteristics of the fermented beverage kefir. Frontiers in Microbiology, 7, 647.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cameron, S., Ried, K., Worsley, A., & Topping, D. (2004). Consumption of foods by young children with diagnosed campylobacter infection—A pilot case-control study. Public Health Nutrition, 7(1), 85–89.

    Article  PubMed  Google Scholar 

  • Cárdenas, N., Calzada, J., Peiroten, A., Jiménez, E., Escudero, R., Rodríguez, J. M., Medina, M., & Fernández, L. (2014). Development of a potential probiotic fresh cheese using two Lactobacillus salivarius strains isolated from human milk. BioMed Research International, 2014, 801918.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carminati, D., Giraffa, G., Zago, M., Marco, M. B., Guglielmotti, D., Binetti, A., & Reinheimer, J. (2016). Lactic acid bacteria for dairy fermentations: Specialized starter cultures to improve dairy products. In F. Mozzi, R. R. Raya, & G. M. Vignolo (Eds.), Biotechnology of lactic acid bacteria: Novel applications (2nd ed., pp. 191–208). Chichester, UK: Wiley.

    Google Scholar 

  • Castro, J. M., Tornadijo, M. E., Fresno, J. M., & Sandoval, H. (2015). Biocheese: A food probiotic carrier. BioMed Research International, 2015, 723056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, M., Sun, Q., Giovannucci, E., Mozaffarian, D., Manson, J. E., Willett, W. C., & Hu, F. B. (2014). Dairy consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. BMC Medicine, 12, 215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheplin, H. A., & Rettger, L. F. (1920). Studies on the transformation of the intestinal flora, with special reference to the implantation of Bacillus acidophilus, II. Feeding experiments on man. Proceedings of the National Academy of Sciences of the United States of America, 6, 704–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chilton, S. N., Burton, J. P., & Reid, G. (2015). Inclusion of fermented foods in food guides around the world. Nutrients, 7(1), 390–404.

    Article  PubMed  PubMed Central  Google Scholar 

  • Codex-Alimentarius. (2003). CODEX standard for fermented milks. Codex Stan 243–2003. Retrieved from http://www.codexalimentarius.net/download/standards/400/CXS_243e.pdf, http://www.codexalimentarius.net/download/standards/400/CXS_243e.pdf

  • del Campo, R., Bravo, D., Canton, R., Ruiz-Garbajosa, P., Garcia-Albiach, R., Montesi-Libois, A., Yuste, F. J., Abraira, V., & Baquero, F. (2005). Scarce evidence of yogurt lactic acid bacteria in human feces after daily yogurt consumption by healthy volunteers. Applied and Environmental Microbiology, 71(1), 547–549.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhakal, R., Bajpai, V. K., & Baek, K. H. (2012). Production of GABA (gamma-aminobutyric acid) by microorganisms: A review. Brazilian Journal of Microbiology, 43(4), 1230–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diana, M., Rafecas, M., Arco, C., & Quilez, J. (2014). Free amino acid profile of Spanish artisanal cheeses: Importance of gamma-aminobutyric acid (GABA) and ornithine content. Journal of Food Composition and Analysis, 35(2), 94–100.

    Article  CAS  Google Scholar 

  • Diaz Heijtz, R., Wang, S., Anuar, F., Qian, Y., Bjorkholm, B., Samuelsson, A., Hibberd, M. L., Forssberg, H., & Pettersson, S. (2011). Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 3047–3052.

    Article  PubMed  Google Scholar 

  • Diaz-Lopez, A., Bullo, M., Martinez-Gonzalez, M. A., Corella, D., Estruch, R., Fito, M., Gomez-Gracia, E., Fiol, M., Garcia de la Corte, F. J., Ros, E., Babio, N., Serra-Majem, L., Pinto, X., Munoz, M. A., Frances, F., Buil-Cosiales, P., & Salas-Salvado, J. (2016). Dairy product consumption and risk of type 2 diabetes in an elderly Spanish Mediterranean population at high cardiovascular risk. European Journal of Nutrition, 55(1), 349–360.

    Article  CAS  PubMed  Google Scholar 

  • Dimitrov, Z., Chorbadjiyska, E., Gotova, I., Pashova, K., & Ilieva, S. (2015). Selected adjunct cultures remarkably increase the content of bioactive peptides in Bulgarian white brined cheese. Biotechnology & Biotechnological Equipment, 29(1), 78–83.

    Article  CAS  Google Scholar 

  • EFSA. (2010). Scientific opinion on the substantiation of health claims related to live yoghurt cultures and improved lactose digestion. EFSA Journal, 8(10), 1763.

    Google Scholar 

  • El Hage, R., Hernandez-Sanabria, E., & Van de Wiele, T. (2017). Emerging trends in “Smart probiotics”: Functional consideration for the development of novel health and industrial applications. Frontiers in Microbiology, 8, 1889.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elli, M., Callegari, M. L., Ferrari, S., Bessi, E., Cattivelli, D., Soldi, S., Morelli, L., Goupil Feuillerat, N., & Antoine, J. M. (2006). Survival of yogurt bacteria in the human gut. Applied and Environmental Microbiology, 72(7), 5113–5117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, X. X., Rioux, L. E., Labrie, S., & Turgeon, S. L. (2016). Commercial cheeses with different texture have different disintegration and protein/peptide release rates during simulated in vitro digestion. International Dairy Journal, 56, 169–178.

    Article  CAS  Google Scholar 

  • Fekete, A. A., Givens, D. I., & Lovegrove, J. A. (2015). Casein-derived lactotripeptides reduce systolic and diastolic blood pressure in a meta-analysis of randomised clinical trials. Nutrients, 7(1), 659–681.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernández, M., Hudson, J. A., Korpela, R., & de los Reyes-Gavilán, C. G. (2015). Impact on human health of microorganisms present in fermented dairy products: An overview. BioMed Research International, 2015, 412714.

    PubMed  PubMed Central  Google Scholar 

  • Franciosi, E., Carafa, I., Nardin, T., Schiavon, S., Poznanski, E., Cavazza, A., Larcher, R., & Tuohy, K. M. (2015). Biodiversity and gamma-aminobutyric acid production by lactic acid bacteria isolated from traditional alpine raw cow’s milk cheeses. BioMed Research International, 2015, 625740.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gandhi, A., & Shah, N. P. (2014). Cell growth and proteolytic activity of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp bulgaricus, and Streptococcus thermophilus in milk as affected by supplementation with peptide fractions. International Journal of Food Sciences and Nutrition, 65(8), 937–941.

    Article  CAS  PubMed  Google Scholar 

  • Guarner, F., Perdigon, G., Corthier, G., Salminen, S., Koletzko, B., & Morelli, L. (2005). Should yoghurt cultures be considered probiotic? The British Journal of Nutrition, 93(6), 783–786.

    Article  CAS  PubMed  Google Scholar 

  • Hagi, T., Kobayashi, M., & Nomura, M. (2016). Metabolome analysis of milk fermented by gamma-aminobutyric acid-producing Lactococcus lactis. Journal of Dairy Science, 99(2), 994–1001.

    Article  CAS  PubMed  Google Scholar 

  • Health-Canada. (2011). Eating well with Canada’s food guide. Retrieved February 26, 2018, from http://www.hc-sc.gc.ca/fn-an/food-guide-aliment/index-eng.php

  • Heintz-Buschart, A., & Wilmes, P. (2018). Human gut microbiome: Function matters. Trends in Microbiology, 26(7), 563–574.

    Article  CAS  PubMed  Google Scholar 

  • Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews. Gastroenterology & Hepatology, 11(8), 506–514.

    Article  Google Scholar 

  • Hill, D., Sugrue, I., Arendt, E., Hill, C., Stanton, C., & Ross, R. P. (2017). Recent advances in microbial fermentation for dairy and health. F1000Research, 6, 751.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hillman, E. T., Lu, H., Yao, T., & Nakatsu, C. H. (2017). Microbial ecology along the gastrointestinal tract. Microbes and Environments, 32(4), 300–313.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iyer, R., & Tomar, S. K. (2009). Folate: A functional food constituent. Journal of Food Science, 74(9), R114–R122.

    Article  CAS  PubMed  Google Scholar 

  • Kailasapathy, K., & Chin, J. (2000). Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunology and Cell Biology, 78(1), 80–88.

    Article  CAS  PubMed  Google Scholar 

  • Karimi, R., Mortazavian, A. M., & Da Cruz, A. G. (2011). Viability of probiotic microorganisms in cheese during production and storage: A review. Dairy Science & Technology, 91(3), 283–308.

    Article  Google Scholar 

  • Kesenkas, H., Gursoy, O., & Ozbas, H. (2017). Kefir. In J. Frias, C. Martinez-Villaluenga, & E. Penas (Eds.), Fermented foods in health and disease prevention (pp. 339–361). London: Academic Press Ltd/Elsevier Science Ltd.

    Chapter  Google Scholar 

  • Keszei, A. P., Schouten, L. J., Goldbohm, R. A., & van den Brandt, P. A. (2010). Dairy intake and the risk of bladder cancer in the Netherlands Cohort Study on Diet and Cancer. American Journal of Epidemiology, 171(4), 436–446.

    Article  PubMed  Google Scholar 

  • Kolmeder, C. A., Salojarvi, J., Ritari, J., de Been, M., Raes, J., Falony, G., Vieira-Silva, S., Kekkonen, R. A., Corthals, G. L., Palva, A., Salonen, A., & de Vos, W. M. (2016). Faecal metaproteomic analysis reveals a personalized and stable functional microbiome and limited effects of a probiotic intervention in adults. PLoS One, 11(4), e0153294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal, 16(9), 945–960.

    Article  CAS  Google Scholar 

  • Ladero, V., & Sanchez, B. (2017). Molecular and technological insights into the aerotolerance of anaerobic probiotics: Examples from bifidobacteria. Current Opinion in Food Science, 14, 110–115.

    Article  Google Scholar 

  • LeBlanc, J. G., Chain, F., Martin, R., Bermudez-Humaran, L. G., Courau, S., & Langella, P. (2017). Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microbial Cell Factories, 16(1), 79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lister, J. (1873). Further contribution to the natural history of bacteria and the germ theory of fermentative changes. The Quarterly Journal of Microscopical Science, 13, 380–408.

    Google Scholar 

  • López-Expósito, I., Miralles, B., Amigo, L., & Hernandez-Ledesma, B. (2017). Health effects of cheese components with a focus on bioactive peptides. In J. Frias, C. Martinez-Villaluenga, & E. Penas (Eds.), Fermented foods in health and disease prevention (pp. 239–273). London: Academic Press Ltd/Elsevier Science Ltd.

    Chapter  Google Scholar 

  • Macori, G., & Cotter, P. D. (2018). Novel insights into the microbiology of fermented dairy foods. Current Opinion in Biotechnology, 49, 172–178.

    Article  CAS  PubMed  Google Scholar 

  • Marciniak, A. (2011). The secondary products revolution: Empirical evidence and its current zooarchaeological critique. Journal of World Prehistory, 24(2–3), 117–130.

    Article  Google Scholar 

  • Marco, M. L., Heeney, D., Binda, S., Cifelli, C. J., Cotter, P. D., Foligne, B., Ganzle, M., Kort, R., Pasin, G., Pihlanto, A., Smid, E. J., & Hutkins, R. (2017). Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology, 44, 94–102.

    Article  CAS  PubMed  Google Scholar 

  • Markowiak, P., & Slizewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9(9), 1021.

    Article  PubMed Central  CAS  Google Scholar 

  • Martinez-Villaluenga, C., Penas, E., & Frias, J. (2017). Bioactive peptides in fermented foods: Production and evidence for health effects. In J. Frias, C. Martinez-Villaluenga, & E. Penas (Eds.), Fermented foods in health and disease prevention (pp. 23–47). London: Academic Press Ltd/Elsevier Science Ltd.

    Chapter  Google Scholar 

  • Mater, D. D., Bretigny, L., Firmesse, O., Flores, M. J., Mogenet, A., Bresson, J. L., & Corthier, G. (2005). Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus survive gastrointestinal transit of healthy volunteers consuming yogurt. FEMS Microbiology Letters, 250(2), 185–187.

    Article  CAS  PubMed  Google Scholar 

  • Metchnikoff, E. (1908). The prolongation of life. Optimistic studies. New York: G. P. Putnam’s Sons/The Knickerbocker Press.

    Google Scholar 

  • Meyer, A. L., Elmadfa, I., Herbacek, I., & Micksche, M. (2007). Probiotic, as well as conventional yogurt, can enhance the stimulated production of proinflammatory cytokines. Journal of Human Nutrition and Dietetics, 20(6), 590–598.

    Article  CAS  PubMed  Google Scholar 

  • Misselwitz, B., Pohl, D., Fruhauf, H., Fried, M., Vavricka, S. R., & Fox, M. (2013). Lactose malabsorption and intolerance: Pathogenesis, diagnosis and treatment. United European Gastroenterology Journal, 1(3), 151–159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Montel, M. C., Buchin, S., Mallet, A., Delbes-Paus, C., Vuitton, D. A., Desmasures, N., & Berthier, F. (2014). Traditional cheeses: Rich and diverse microbiota with associated benefits. International Journal of Food Microbiology, 177, 136–154.

    Article  PubMed  Google Scholar 

  • Moslehi-Jenabian, S., Pedersen, L. L., & Jespersen, L. (2010). Beneficial effects of probiotic and food borne yeasts on human health. Nutrients, 2(4), 449–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagpal, R., Behare, P., Rana, R., Kumar, A., Kumar, M., Arora, S., Morotta, F., Jain, S., & Yadav, H. (2011). Bioactive peptides derived from milk proteins and their health beneficial potentials: An update. Food & Function, 2(1), 18–27.

    Article  CAS  Google Scholar 

  • Nampoothiri, K. M., Beena, D. J., Vasanthakumari, D. S., & Ismail, B. (2017). Health benefits of exopolysaccharides in fermented foods. In J. Frias, C. Martinez-Villaluenga, & E. Penas (Eds.), Fermented foods in health and disease prevention (pp. 49–62). London: Academic Press Ltd/Elsevier Science Ltd.

    Chapter  Google Scholar 

  • Nash, M. J., Frank, D. N., & Friedman, J. E. (2017). Early microbes modify immune system development and metabolic homeostasis—The “Restaurant” hypothesis revisited. Frontiers in Endocrinology, 8, 349.

    Article  PubMed  PubMed Central  Google Scholar 

  • Olivares, M., Diaz-Ropero, P., Gomez, N., Sierra, S., Lara-Villoslada, F., Martin, R., Rodriguez, J. M., & Xaus, J. (2006). Dietary deprivation of fermented foods causes a fall in innate immune response. Lactic acid bacteria can counteract the immunological effect of this deprivation. Journal of Dairy Research, 73(4), 492–498.

    Article  CAS  PubMed  Google Scholar 

  • Ong, L., Henriksson, A., & Shah, N. P. (2007). Angiotensin converting enzyme-inhibitory activity in Cheddar cheeses made with the addition of probiotic Lactobacillus casei sp. Le Lait, 87(2), 149–165.

    Article  CAS  Google Scholar 

  • Orla O’Sullivan, P. D. C. (2017). Microbiota of raw milk and raw milk cheeses. In P. L. H. McSweeney, P. F. Fox, P. D. Cotter, & D. W. W. Everett (Eds.), Cheese: Chemistry, physics and microbiology (pp. 301–316). London: Elsevier Academic Press.

    Chapter  Google Scholar 

  • Pala, V., Sieri, S., Berrino, F., Vineis, P., Sacerdote, C., Palli, D., Masala, G., Panico, S., Mattiello, A., Tumino, R., Giurdanella, M. C., Agnoli, C., Grioni, S., & Krogh, V. (2011). Yogurt consumption and risk of colorectal cancer in the Italian European prospective investigation into cancer and nutrition cohort. International Journal of Cancer, 129(11), 2712–2719.

    Article  CAS  PubMed  Google Scholar 

  • Pelaez, C., & Requena, T. (2005). Exploiting the potential of bacteria in the cheese ecosystem. International Dairy Journal, 15(6–9), 831–844.

    Article  CAS  Google Scholar 

  • Perdigón, G., de Moreno de LeBlanc, A., Valdez, J., & Rachid, M. (2002). Role of yoghurt in the prevention of colon cancer. European Journal of Clinical Nutrition, 56(Suppl 3), S65–S68.

    Article  PubMed  CAS  Google Scholar 

  • Prakash Tamang, J., & Kailasapathy, K. (2010). Fermented foods and beverages of the world. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Quilez, J., & Diana, M. (2017). Gamma-aminobutyric acid-enriched fermented foods. In J. Frias, C. Martinez-Villaluenga, & E. Penas (Eds.), Fermented foods in health and disease prevention (pp. 85–103). London: Academic Press Ltd/Elsevier Science Ltd.

    Chapter  Google Scholar 

  • Rizkalla, S. W., Luo, J., Kabir, M., Chevalier, A., Pacher, N., & Slama, G. (2000). Chronic consumption of fresh but not heated yogurt improves breath-hydrogen status and short-chain fatty acid profiles: A controlled study in healthy men with or without lactose maldigestion. American Journal of Clinical Nutrition, 72(6), 1474–1479.

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Ronquillo, R., Cruz-Guerrero, A., Flores-Najera, A., Rodriguez-Serrano, G., Gomez-Ruiz, L., Reyes-Grajeda, J. P., Jimenez-Guzman, J., & Garcia-Garibay, M. (2012). Antithrombotic and angiotensin-converting enzyme inhibitory properties of peptides released from bovine casein by Lactobacillus casei Shirota. International Dairy Journal, 26(2), 147–154.

    Article  CAS  Google Scholar 

  • Ross, R. P., Fitzgerald, G., Collins, K., & Stanton, C. (2002). Cheese delivering biocultures—Probiotic cheese. Australian Journal of Dairy Technology, 57(2), 71–78.

    Google Scholar 

  • Ryan, P. M., Ross, R. P., Fitzgerald, G. F., Caplice, N. M., & Stanton, C. (2015). Sugar-coated: Exopolysaccharide producing lactic acid bacteria for food and human health applications. Food & Function, 6(3), 679–693.

    Article  CAS  Google Scholar 

  • Saito, T., Nakamura, T., Kitazawa, H., Kawai, Y., & Itoh, T. (2000). Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese. Journal of Dairy Science, 83(7), 1434–1440.

    Article  CAS  PubMed  Google Scholar 

  • Salazar, N., Gueimonde, M., de los Reyes-Gavilan, C. G., & Ruas-Madiedo, P. (2016). Exopolysaccharides produced by lactic acid bacteria and bifidobacteria as fermentable substrates by the intestinal microbiota. Critical Reviews in Food Science and Nutrition, 56(9), 1440–1453.

    Article  CAS  PubMed  Google Scholar 

  • Santiago, S., Sayon-Orea, C., Babio, N., Ruiz-Canela, M., Marti, A., Corella, D., Estruch, R., Fito, M., Aros, F., Ros, E., Gomez-Garcia, E., Fiol, M., Lapetra, J., Serra-Majem, L., Becerra-Tomas, N., Salas-Salvado, J., Pinto, X., Schroder, H., & Martinez, J. A. (2016). Yogurt consumption and abdominal obesity reversion in the PREDIMED study. Nutrition, Metabolism, and Cardiovascular Diseases, 26(6), 468–475.

    Article  CAS  PubMed  Google Scholar 

  • Saubade, F., Hemery, Y. M., Guyot, J.-P., & Humblot, C. (2017). Lactic acid fermentation as a tool for increasing the folate content of foods. Critical Reviews in Food Science and Nutrition, 57(18), 3894–3910.

    Article  CAS  PubMed  Google Scholar 

  • Savaiano, D. A. (2014). Lactose digestion from yogurt: Mechanism and relevance. The American Journal of Clinical Nutrition, 99(5 Suppl), 1251S–1255S.

    Article  CAS  PubMed  Google Scholar 

  • Sayon-Orea, C., Martinez-Gonzalez, M. A., Ruiz-Canela, M., & Bes-Rastrollo, M. (2017). Associations between yogurt consumption and weight gain and risk of obesity and metabolic syndrome: A systematic review. Advances in Nutrition, 8(1), 146S–154S.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schleifer, K. H., Kraus, J., Dvorak, C., Kilpperbalz, R., Collins, M. D., & Fischer, W. (1985). Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen. nov. Systematic and Applied Microbiology, 6(2), 183–195.

    Article  CAS  Google Scholar 

  • Schmidt, T. S. B., Raes, J., & Bork, P. (2018). The human gut microbiome: From association to modulation. Cell, 172(6), 1198–1215.

    Article  CAS  PubMed  Google Scholar 

  • Seppo, L., Jauhiainen, T., Poussa, T., & Korpela, R. (2003). A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. American Journal of Clinical Nutrition, 77(2), 326–330.

    Article  CAS  PubMed  Google Scholar 

  • Settanni, L., & Moschetti, G. (2010). Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiology, 27(6), 691–697.

    Article  CAS  PubMed  Google Scholar 

  • Silanikove, N., Leitner, G., & Merin, U. (2015). The interrelationships between lactose intolerance and the modern dairy industry: Global perspectives in evolutional and historical backgrounds. Nutrients, 7(9), 7312–7331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sipola, M., Finckenberg, P., Korpela, R., Vapaatalo, H., & Nurminen, M. L. (2002). Effect of long-term intake of milk products on blood pressure in hypertensive rats. Journal of Dairy Research, 69(1), 103–111.

    Article  CAS  PubMed  Google Scholar 

  • Smid, E. J., Erkus, O., Spus, M., Wolkers-Rooijackers, J. C., Alexeeva, S., & Kleerebezem, M. (2014). Functional implications of the microbial community structure of undefined mesophilic starter cultures. Microbial Cell Factories, 13(Suppl 1), S2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sommer, F., & Backhed, F. (2016). Know your neighbor: Microbiota and host epithelial cells interact locally to control intestinal function and physiology. BioEssays, 38(5), 455–464.

    Article  PubMed  Google Scholar 

  • Sonestedt, E., Wirfalt, E., Wallstrom, P., Gullberg, B., Orho-Melander, M., & Hedblad, B. (2011). Dairy products and its association with incidence of cardiovascular disease: The Malmo diet and cancer cohort. European Journal of Epidemiology, 26(8), 609–618.

    Article  CAS  PubMed  Google Scholar 

  • Stanton, C., Ross, R. P., Fitzgerald, G. F., & Van Sinderen, D. (2005). Fermented functional foods based on probiotics and their biogenic metabolites. Current Opinion in Biotechnology, 16(2), 198–203.

    Article  CAS  PubMed  Google Scholar 

  • St-Onge, M. P., Farnworth, E. R., & Jones, P. J. (2000). Consumption of fermented and nonfermented dairy products: Effects on cholesterol concentrations and metabolism. The American Journal of Clinical Nutrition, 71(3), 674–681.

    Article  CAS  PubMed  Google Scholar 

  • Thierry, A., Deutsch, S. M., Falentin, H., Dalmasso, M., Cousin, F. J., & Jan, G. (2011). New insights into physiology and metabolism of Propionibacterium freudenreichii. International Journal of Food Microbiology, 149(1), 19–27.

    Article  CAS  PubMed  Google Scholar 

  • Tripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225–241.

    Article  CAS  Google Scholar 

  • Tunick, M. H., & Van Hekken, D. L. (2015). Dairy products and health: Recent insights. Journal of Agricultural and Food Chemistry, 63(43), 9381–9388.

    Article  CAS  PubMed  Google Scholar 

  • Unno, T., Choi, J. H., Hur, H. G., Sadowsky, M. J., Ahn, Y. T., Huh, C. S., Kim, G. B., & Cha, C. J. (2015). Changes in human gut microbiota influenced by probiotic fermented milk ingestion. Journal of Dairy Science, 98(6), 3568–3576.

    Article  CAS  PubMed  Google Scholar 

  • Urista, C. M., Fernandez, R. A., Rodriguez, F. R., Cuenca, A. A., & Jurado, A. T. (2011). Review: Production and functionality of active peptides from milk. Food Science and Technology International, 17(4), 293–317.

    Article  CAS  Google Scholar 

  • USDA. (2010). Dietary guidelines for Americans. Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Ventura, M., O’Flaherty, S., Claesson, M. J., Turroni, F., Klaenhammer, T. R., van Sinderen, D., & O’Toole, P. W. (2009). Genome-scale analyses of health-promoting bacteria: Probiogenomics. Nature Reviews. Microbiology, 7(1), 61–71.

    Article  CAS  PubMed  Google Scholar 

  • Van der Meer, R., Bovee-Oudenhoven, I. M. J. (1998). Dietary modulation of intestinal bacterial infections. International Dairy Journal, 8(5-6), 481–486.

    Article  CAS  Google Scholar 

  • Wang, H., Livingston, K. A., Fox, C. S., Meigs, J. B., & Jacques, P. F. (2013). Yogurt consumption is associated with better diet quality and metabolic profile in American men and women. Nutrition Research, 33(1), 18–26.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, M., Maemura, K., Kanbara, K., Tamayama, T., & Hayasaki, H. (2002). GABA and GABA receptors in the central nervous system and other organs. International Review of Cytology, 213, 1–47.

    Article  CAS  PubMed  Google Scholar 

  • Weimer, B. (2007). Improving the flavour of cheese. Boca Raton: Woodhead Publishing/CRC Press.

    Book  Google Scholar 

  • Wouters, J. T. M., Ayad, E. H. E., Hugenholtz, J., & Smit, G. (2002). Microbes from raw milk for fermented dairy products. International Dairy Journal, 12(2–3), 91–109.

    Article  CAS  Google Scholar 

  • Wu, Q. L., & Shah, N. P. (2017). High gamma-aminobutyric acid production from lactic acid bacteria: Emphasis on Lactobacillus brevis as a functional dairy starter. Critical Reviews in Food Science and Nutrition, 57(17), 3661–3672.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Derrien, M., Levenez, F., Brazeilles, R., Ballal, S. A., Kim, J., Degivry, M. C., Quere, G., Garault, P., van Hylckama Vlieg, J. E., Garrett, W. S., Dore, J., & Veiga, P. (2016). Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. The ISME Journal, 10(9), 2235–2245.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng, H., Yde, C. C., Clausen, M. R., Kristensen, M., Lorenzen, J., Astrup, A., & Bertram, H. C. (2015). Metabolomics investigation to shed light on cheese as a possible piece in the French paradox puzzle. Journal of Agricultural and Food Chemistry, 63(10), 2830–2839.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, L., Zhang, X., & Covasa, M. (2014). Emerging roles of lactic acid bacteria in protection against colorectal cancer. World Journal of Gastroenterology, 20(24), 7878–7886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu, Y., Wang, H., Hollis, J. H., & Jacques, P. F. (2015). The associations between yogurt consumption, diet quality, and metabolic profiles in children in the USA. European Journal of Nutrition, 54(4), 543–550.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry (Project AGL2016-75951-R), CDTI (INDEKA IDI-20190077) and CYTED (Project P917PTE0537/PCIN-2017-075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Requena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peláez, C., Martínez-Cuesta, M.C., Requena, T. (2019). Fermented Dairy Products. In: Azcarate-Peril, M., Arnold, R., Bruno-Bárcena, J. (eds) How Fermented Foods Feed a Healthy Gut Microbiota. Springer, Cham. https://doi.org/10.1007/978-3-030-28737-5_2

Download citation

Publish with us

Policies and ethics