Skip to main content

Data Reduction in Multifunction OLAP

  • Conference paper
  • First Online:
Book cover Advances in Databases and Information Systems (ADBIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11695))

Included in the following conference series:

  • 730 Accesses

Abstract

Multifunction OLAP allows to associate several types of aggregation functions to the same measure: general, dimensional for each analysis axis, hierarchical for each hierarchy and differentiated for each granularity level. These functions are generally non-commutative, so, an execution order between the functions is predefined. Pivot tables and several diagram types (bars, pies, etc.) are used to visualize interactively the result of an OLAP query. Unfortunately, no works investigate readability issues in multifunction OLAP. Therefore, we propose a post-processing method to reduce data size of the multifunction OLAP query result in order to improve the readability. This method aggregates data at higher granularity levels, i.e., doing a Rollup operation. It starts by studying the current query to find the functions that have already been executed. Then, it finds all possible Rollup operations, which respect the execution order and the aggregation constraints, and it calculates its data size. We propose several strategies to select a Rollup that gives a readable diagram and keeps as many details as possible: looking at the data size only, the number of implicated granularity levels and the number or the type of implicated dimensions. Once a Rollup is selected, we find the functions that realize it and we execute them in the right execution order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \((p +^{\prec } i)\) returns the parameter at the i-th position relative to p: \((i=1)\) returns the directly upper parameter; \((i<0)\) returns a lower parameter.

References

  1. Abela, A.: Advanced Presentations by Design: Creating Communication that Drives Action. Wiley, Hoboken (2013)

    Google Scholar 

  2. Ahlberg, C., Shneiderman, B.: Visual information seeking: tight coupling of dynamic query filters with starfield displays. In: Readings in Human–Computer Interaction, pp. 450–456. Morgan Kaufmann (1995). ISBN: 978-0-08-051574-8

    Google Scholar 

  3. Boschetti, M.A., Golfarelli, M., Graziani, S.: An exact method for shrinking pivot tables. Omega (2019). https://doi.org/10.1016/j.omega.2019.03.002

    Article  Google Scholar 

  4. Dix, A., Ellis, G.: By chance enhancing interaction with large data sets through statistical sampling. In: The Working Conference on AVI, pp. 167–176 (2002)

    Google Scholar 

  5. Golfarelli, M., Graziani, S., Rizzi, S.: Shrink: an OLAP operation for balancing precision and size of pivot tables. Data Knowl. Eng. 93, 19–41 (2014)

    Article  Google Scholar 

  6. Gray, J., Bosworth, A., Lyaman, A., Pirahesh, H.: Data cube: a relational aggregation operator generalizing group-by, cross-tab, and sub-totals. In: ICDE, pp. 152–159 (1996)

    Google Scholar 

  7. Hassan, A., Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: OLAP in multifunction multidimensional databases. In: Catania, B., Guerrini, G., Pokorný, J. (eds.) ADBIS 2013. LNCS, vol. 8133, pp. 190–203. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40683-6_15

    Chapter  Google Scholar 

  8. Hassan, A., Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Differentiated multiple aggregations in multidimensional databases. In: Hameurlain, A., Küng, J., Wagner, R., Cuzzocrea, A., Dayal, U. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXI. LNCS, vol. 9260, pp. 20–47. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47804-2_2

    Chapter  Google Scholar 

  9. Jerding, D.F., Stasko, J.T.: The information mural: a technique for displaying and navigating large information spaces. IEEE TVCG 4(3), 257–271 (1998)

    Google Scholar 

  10. Jugel, U., Jerzak, Z., Hackenbroich, G.: M4: a visualization-oriented time series data aggregation. Proc. VLDB 7, 797–808 (2014)

    Article  Google Scholar 

  11. Jugel, U., Jerzak, Z., Hackenbroich, G., Markl, V.: VDDA: automatic visualization-driven data aggregation in relational databases. VLDB J. 25(1), 53–77 (2016)

    Article  Google Scholar 

  12. Keim, D.A.: Pixel-oriented visualization techniques for exploring very large data bases. J. Comput. Graph. Stat. 5(1), 58–77 (1996)

    Google Scholar 

  13. Kimball, R.: The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouses, vol. 121, 2nd edn. Wiley, Hoboken (2002)

    Google Scholar 

  14. Li, M., Choudhury, F., Bao, Z., Samet, H., Sellis, T.: ConcaveCubes: supporting cluster-based geographical visualization in large data scale. Comput. Graph. Forum 37(3), 217–228 (2018)

    Article  Google Scholar 

  15. Lins, L., Klosowski, J.T., Scheidegger, C.: Nanocubes for real-time exploration of spatiotemporal datasets. IEEE TVCG 19(12), 2456–2465 (2013)

    Google Scholar 

  16. Liu, Z., Jiang, B., Heer, J.: imMens: real-time visual querying of big data. Comput. Graph. Forum 32, 421–430 (2013)

    Article  Google Scholar 

  17. Marty, R.: Applied Security Visualization, 1st edn. Addison-Wesley Professional, Boston (2008)

    Google Scholar 

  18. Meyer, M., Takahashi, S., Vilanova, A.: The state-of-the-art in predictive visual. Comput. Graph. Forum 36(3), 539–562 (2017)

    Article  Google Scholar 

  19. Miranda, F., Lins, L., Klosowski, J.T., Silva, C.T.: TopKube: a rank-aware data cube for real-time exploration of spatiotemporal data. IEEE TVCG 24(3), 1394–1407 (2018)

    Google Scholar 

  20. Pahins, C.A., Stephens, S.A., Scheidegger, C., Comba, J.L.: Hashedcubes: simple, low memory, real-time visual exploration of big data. IEEE TVCG 23(1), 671–680 (2017)

    Google Scholar 

  21. Peng, W., Ward, M.O., Rundensteiner, E.A.: Clutter reduction in multi-dimensional data visualization using dimension reordering. In: IEEE Symposium on Information Visualization, pp. 89–96 (2004)

    Google Scholar 

  22. Silva, R., Moura-Pires, J., Santos, M.Y.: Spatial clustering in SOLAP systems to enhance map visualization. IJDWM 8(2), 23–43 (2012)

    Google Scholar 

  23. Stolper, C.D., Perer, A., Gotz, D.: Progressive visual analytics: user-driven visual exploration of in-progress analytics. IEEE TVCG 20(12), 1653–1662 (2014)

    Google Scholar 

  24. Trutschl, M., Grinstein, G., Cvek, U.: Intelligently resolving point occlusion. In: Proceedings of the IEEE Symposium on Information Visualization, pp. 131–136 (2003)

    Google Scholar 

  25. Wang, Z., Ferreira, N., Wei, Y., Bhaskar, A.S., Scheidegger, C.: Gaussian cubes: real-time modeling for visual exploration of large multidimensional datasets. IEEE TVCG 23(1), 681–690 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hassan, A., Darmon, P. (2019). Data Reduction in Multifunction OLAP. In: Welzer, T., Eder, J., Podgorelec, V., Kamišalić Latifić, A. (eds) Advances in Databases and Information Systems. ADBIS 2019. Lecture Notes in Computer Science(), vol 11695. Springer, Cham. https://doi.org/10.1007/978-3-030-28730-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28730-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28729-0

  • Online ISBN: 978-3-030-28730-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics