Skip to main content

Inflammatory Bowel Disease and Epigenetics

  • Chapter
  • First Online:
Book cover Molecular Genetics of Inflammatory Bowel Disease

Abstract

The term epigenome refers to the complete set of DNA methylation events, histone modifications, and chromatin accessibility and its relation to coding and noncoding RNA molecules. All marks are cell-type specific and are dynamically modulated throughout the lifetime of an individual. Epigenetic processes are critical for regular development of the intestinal mucosa. Important examples include shaping of immune responses and epithelial differentiation. However, specific epigenetic signatures and genetic variants in genes encoding parts of the epigenetic machinery (e.g., DNMT3A/B) have also been associated with inflammatory bowel disease (IBD). Thus, it is well conceivable that such alterations of the epigenome in different cellular compartments may link genetic susceptibility and environmental influences and may determine “decision points” in the progression toward disease onset (i.e., manifestation) and/or progression of IBD. The chapter provides a review of recent advances in epigenetic research in IBD and aims to link general aspects of our understanding of epigenetic processes in the intestine with more specific clinical observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams AT, Kennedy NA, Hansen R, Ventham NT, O’Leary KR, Drummond HE, Noble CL, El-omar E, Russell RK, Wilson DC, Nimmo ER, Hold GL, Satsangi J (2014) Two-stage genome-wide methylation profiling in childhood-onset Crohn’s Disease implicates epigenetic alterations at the VMP1/MIR21 and HLA loci. Inflamm Bowel Dis 20:1784–1793

    Article  PubMed  Google Scholar 

  2. Adams D, Altucci L, Antonarakis SE, Ballesteros J, Beck S, Bird A, Bock C, Boehm B, Campo E, Caricasole A, Dahl F, Dermitzakis ET, Enver T, Esteller M, Estivill X, Ferguson-Smith A, Fitzgibbon J, Flicek P, Giehl C, Graf T, Grosveld F, Guigo R, Gut I, Helin K, Jarvius J, Kuppers R, Lehrach H, Lengauer T, Lernmark A, Leslie D, Loeffler M, Macintyre E, Mai A, Martens JH, Minucci S, Ouwehand WH, Pelicci PG, Pendeville H, Porse B, Rakyan V, Reik W, Schrappe M, Schubeler D, Seifert M, Siebert R, Simmons D, Soranzo N, Spicuglia S, Stratton M, Stunnenberg HG, Tanay A, Torrents D, Valencia A, Vellenga E, Vingron M, Walter J, Willcocks S (2012) BLUEPRINT to decode the epigenetic signature written in blood. Nat Biotechnol 30:224–226

    Article  CAS  PubMed  Google Scholar 

  3. Aden K, Rehman A, Falk-Paulsen M, Secher T, Kuiper J, Tran F, Pfeuffer S, Sheibani-Tezerji R, Breuer A, Luzius A, Jentzsch M, Hasler R, Billmann-Born S, Will O, Lipinski S, Bharti R, Adolph T, Iovanna JL, Kempster SL, Blumberg RS, Schreiber S, Becher B, Chamaillard M, Kaser A, Rosenstiel P (2016) Epithelial IL-23R signaling licenses protective IL-22 responses in intestinal inflammation. Cell Rep 16:2208–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aden K, Tran F, Ito G, Sheibani-Tezerji R, Lipinski S, Kuiper JW, Tschurtschenthaler M, Saveljeva S, Bhattacharyya J, Hasler R, Bartsch K, Luzius A, Jentzsch M, Falk-Paulsen M, Stengel ST, Welz L, Schwarzer R, Rabe B, Barchet W, Krautwald S, Hartmann G, Pasparakis M, Blumberg RS, Schreiber S, Kaser A, Rosenstiel P (2018) ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS-STING. J Exp Med 215:2868–2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ahn SH, Shah YM, Inoue J, Morimura K, Kim I, Yim S, Lambert G, Kurotani R, Nagashima K, Gonzalez FJ, Inoue Y (2008) Hepatocyte nuclear factor 4alpha in the intestinal epithelial cells protects against inflammatory bowel disease. Inflamm Bowel Dis 14:908–920

    Article  PubMed  Google Scholar 

  6. Anderson CA, Boucher G, Lees CW, Franke A, D’Amato M, Taylor KD, Lee JC, Goyette P, Imielinski M, Latiano A, Lagace C, Scott R, Amininejad L, Bumpstead S, Baidoo L, Baldassano RN, Barclay M, Bayless TM, Brand S, Buning C, Colombel JF, Denson LA, De Vos M, Dubinsky M, Edwards C, Ellinghaus D, Fehrmann RS, Floyd JA, Florin T, Franchimont D, Franke L, Georges M, Glas J, Glazer NL, Guthery SL, Haritunians T, Hayward NK, Hugot JP, Jobin G, Laukens D, Lawrance I, Lemann M, Levine A, Libioulle C, Louis E, McGovern DP, Milla M, Montgomery GW, Morley KI, Mowat C, Ng A, Newman W, Ophoff RA, Papi L, Palmieri O, Peyrin-Biroulet L, Panes J, Phillips A, Prescott NJ, Proctor DD, Roberts R, Russell R, Rutgeerts P, Sanderson J, Sans M, Schumm P, Seibold F, Sharma Y, Simms LA, Seielstad M, Steinhart AH, Targan SR, Van Den Berg LH, Vatn M, Verspaget H, Walters T, Wijmenga C, Wilson DC, Westra HJ, Xavier RJ, Zhao ZZ, Ponsioen CY, Andersen V, Torkvist L, Gazouli M, Anagnou NP, Karlsen TH, Kupcinskas L, Sventoraityte J, Mansfield JC, Kugathasan S, Silverberg MS, Halfvarson J, Rotter JI, Mathew CG, Griffiths AM, Gearry R, Ahmad T, Brant SR, Chamaillard M et al (2011) Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 43:246–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y, Narushima S, Suda W, Imaoka A, Setoyama H, Nagamori T, Ishikawa E, Shima T, Hara T, Kado S, Jinnohara T, Ohno H, Kondo T, Toyooka K, Watanabe E, Yokoyama S, Tokoro S, Mori H, Noguchi Y, Morita H, Ivanov II, Sugiyama T, Nunez G, Camp JG, Hattori M, Umesaki Y, Honda K (2015) Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163:367–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Autran D, Baroux C, Raissig MT, Lenormand T, Wittig M, Grob S, Steimer A, Barann M, Klostermeier UC, Leblanc O, Vielle-Calzada JP, Rosenstiel P, Grimanelli D, Grossniklaus U (2011) Maternal epigenetic pathways control parental contributions to Arabidopsis early embryogenesis. Cell 145:707–719

    Article  CAS  PubMed  Google Scholar 

  9. Bae JH, Park J, Yang KM, Kim TO, Yi JM, IBD Study Group of Korean Association for Study of Intestinal Diseases (KASID) (2014) Detection of DNA hypermethylation in sera of patients with Crohn’s disease. Mol Med Rep 9:725–729

    Article  CAS  PubMed  Google Scholar 

  10. Bell JT, Spector TD (2011) A twin approach to unraveling epigenetics. Trends Genet 27:116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    Article  CAS  PubMed  Google Scholar 

  12. Brown SW, Nur U (1964) Heterochromatic chromosomes in the coccids. Science 145:130–136

    Article  CAS  PubMed  Google Scholar 

  13. Castel SE, Ren J, Bhattacharjee S, Chang AY, Sanchez M, Valbuena A, Antequera F, Martienssen RA (2014) Dicer promotes transcription termination at sites of replication stress to maintain genome stability. Cell 159:572–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chedin F, Lieber MR, Hsieh CL (2002) The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci U S A 99:16916–16921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chiba H, Kakuta Y, Kinouchi Y, Kawai Y, Watanabe K, Nagao M, Naito T, Onodera M, Moroi R, Kuroha M, Kanazawa Y, Kimura T, Shiga H, Endo K, Negoro K, Nagasaki M, Unno M, Shimosegawa T (2019) Correction: allele-specific DNA methylation of disease susceptibility genes in Japanese patients with inflammatory bowel disease. PLoS One 14:e0212148

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cleynen I, Boucher G, Jostins L, Schumm LP, Zeissig S, Ahmad T, Andersen V, Andrews JM, Annese V, Brand S, Brant SR, Cho JH, Daly MJ, Dubinsky M, Duerr RH, Ferguson LR, Franke A, Gearry RB, Goyette P, Hakonarson H, Halfvarson J, Hov JR, Huang H, Kennedy NA, Kupcinskas L, Lawrance IC, Lee JC, Satsangi J, Schreiber S, Theatre E, Van Der Meulen-De Jong AE, Weersma RK, Wilson DC, International Inflammatory Bowel Disease Genetics Consortium, Parkes M, Vermeire S, Rioux JD, Mansfield J, Silverberg MS, Radford-Smith G, McGovern DP, Barrett JC, Lees CW (2016) Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet 387:156–167

    Article  PubMed  PubMed Central  Google Scholar 

  17. Denizot J, Desrichard A, Agus A, Uhrhammer N, Dreux N, Vouret-Craviari V, Hofman P, Darfeuille-Michaud A, Barnich N (2015) Diet-induced hypoxia responsive element demethylation increases CEACAM6 expression, favouring Crohn’s disease-associated Escherichia coli colonisation. Gut 64:428–437

    Article  CAS  PubMed  Google Scholar 

  18. Dideberg V, Kristjansdottir G, Milani L, Libioulle C, Sigurdsson S, Louis E, Wiman AC, et al. (2007) An insertion-deletion polymorphism in the interferon regulatory factor 5 (IRF5) gene confers risk of inflammatory bowel diseases. Hum Mol Genet 16(24):3008–3016

    Google Scholar 

  19. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    Article  CAS  PubMed  Google Scholar 

  20. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    Article  CAS  PubMed  Google Scholar 

  21. Felsen J, Wolarsky W (1955) Familial incidence of ulcerative colitis and ileitis. Gastroenterology 28(3):412–417

    Google Scholar 

  22. Ferguson-Smith AC (2011) Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 12:565

    Article  CAS  PubMed  Google Scholar 

  23. Franke A, McGovern DPB, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, Lees CW, Balschun T, Lee J, Roberts R, Anderson CA, Bis JC, Bumpstead S, Ellinghaus D, Festen EM, Georges M, Green T, Haritunians T, Jostins L, Latiano A, Mathew CG, Montgomery GW, Prescott NJ, Raychaudhuri S, Rotter JI, Schumm P, Sharma Y, Simms LA, Taylor KD, Whiteman D, Wijmenga C, Baldassano RN, Barclay M, Bayless TM, Brand S, Buning C, Cohen A, Colombel JF, Cottone M, Stronati L, Denson T, De Vos M, D’Inca R, Dubinsky M, Edwards C, Florin T, Franchimont D, Gearry R, Glas J, Van Gossum A, Guthery SL, Halfvarson J, Verspaget HW, Hugot JP, Karban A, Laukens D, Lawrance I, Lemann M, Levine A, Libioulle C, Louis E, Mowat C, Newman W, Panes J, Phillips A, Proctor DD, Regueiro M, Russell R, Rutgeerts P, Sanderson J, Sans M, Seibold F, Steinhart AH, Stokkers PCF, Torkvist L, Kullak-Ublick G, Wilson D, Walters T, Targan SR, Brant SR, Rioux JD, D’Amato M, Weersma RK, Kugathasan S, Griffiths AM, Mansfield JC, Vermeire S, Duerr RH, Silverberg MS, Satsangi J, Schreiber S, Cho JH, Annese V, Hakonarson H, Daly MJ, Parkes M (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42:1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Glória L, Cravo M, Pinto A, de Sousa LS, Chaves P, Leitão CN, Quina M, Mira FC, Soares J (1996) DNA hypomethylation and proliferative activity are increased in the rectal mucosa of patients with long-standing ulcerative colitis. Cancer 78(11):2300–2306

    Google Scholar 

  25. Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG, Jacobsen SE, Bestor TH (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311:395–398

    Article  CAS  PubMed  Google Scholar 

  26. Gonsky R, Deem RL, Targan SR (2009) Distinct methylation of IFNG in the gut. J Interferon Cytokine Res 29(7):407–414

    Google Scholar 

  27. Hasler R, Feng Z, Backdahl L, Spehlmann ME, Franke A, Teschendorff A, Rakyan VK, Down TA, Wilson GA, Feber A, Beck S, Schreiber S, Rosenstiel P (2012) A functional methylome map of ulcerative colitis. Genome Res 22:2130–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hermann A, Gowher H, Jeltsch A (2004) Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 61:2571–2587

    Article  CAS  PubMed  Google Scholar 

  29. Howell KJ, Kraiczy J, Nayak KM, Gasparetto M, Ross A, Lee C, Mak TN, Koo BK, Kumar N, Lawley T, Sinha A, Rosenstiel P, Heuschkel R, Stegle O, Zilbauer M (2018) DNA methylation and transcription patterns in intestinal epithelial cells from pediatric patients with inflammatory bowel diseases differentiate disease subtypes and associate with outcome. Gastroenterology 154:585–598

    Article  CAS  PubMed  Google Scholar 

  30. Huang H, Fang M, Jostins L, Umicevic Mirkov M, Boucher G, Anderson CA, Andersen V, Cleynen I, Cortes A, Crins F, D’Amato M, Deffontaine V, Dmitrieva J, Docampo E, Elansary M, Farh KK, Franke A, Gori AS, Goyette P, Halfvarson J, Haritunians T, Knight J, Lawrance IC, Lees CW, Louis E, Mariman R, Meuwissen T, Mni M, Momozawa Y, Parkes M, Spain SL, Theatre E, Trynka G, Satsangi J, Van Sommeren S, Vermeire S, Xavier RJ, International Inflammatory Bowel Disease Genetics Consortium, Weersma RK, Duerr RH, Mathew CG, Rioux JD, McGovern DPB, Cho JH, Georges M, Daly MJ, Barrett JC (2017) Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 547:173–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei DG, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449:248–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  CAS  PubMed  Google Scholar 

  34. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, Essers J, Mitrovic M, Ning K, Cleynen I, Theatre E, Spain SL, Raychaudhuri S, Goyette P, Wei Z, Abraham C, Achkar JP, Ahmad T, Amininejad L, Ananthakrishnan AN, Andersen V, Andrews JM, Baidoo L, Balschun T, Bampton PA, Bitton A, Boucher G, Brand S, Buning C, Cohain A, Cichon S, D’Aamato M, De Jong D, Devaney KL, Dubinsky M, Edwards C, Ellinghaus D, Ferguson LR, Franchimont D, Fransen K, Gearry R, Georges M, Gieger C, Glas J, Haritunians T, Hart A, Hawkey C, Hedl M, Hu XL, Karlsen TH, Kupcinskas L, Kugathasan S, Latiano A, Laukens D, Lawrance IC, Lees CW, Louis E, Mahy G, Mansfield J, Morgan AR, Mowat C, Newman W, Palmieri O, Ponsioen CY, Potocnik U, Prescott NJ, Regueiro M, Rotter JI, Russell RK, Sanderson JD, Sans M, Satsangi J, Schreiber S, Simms LA, Sventoraityte J, Targan SR, Taylor KD, Tremelling M, Verspaget HW, De Vos M, Wijmenga C, Wilson DC, Winkelmann J, Xavier RJ, Zeissig S, Zhang B, Zhang CK, Zhao HY, Silverberg MS, Annese V, Hakonarson H, Brant SR, Radford-Smith G, Mathew CG, Rioux JD, Schadt EE et al (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H, Nieuwenhuis EES, Higgins DE, Schreiber S, Glimcher LH, Blumberg RS (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134:743–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kellermayer R, Balasa A, Zhang W, Lee S, Mirza S, Chakravarty A, Szigeti A, et al. (2010) Epigenetic Maturation in Colonic Mucosa Continues Beyond Infancy in Mice. Hum Mol Genet 19(11):2168–2176

    Google Scholar 

  37. Kraiczy J, Ross ADB, Forbester JL, Dougan G, Vallier L, Zilbauer M (2019) Genome-wide epigenetic and transcriptomic characterization of human-induced pluripotent stem cell-derived intestinal epithelial organoids. Cell Mol Gastroenterol Hepatol 7:285–288

    Article  PubMed  Google Scholar 

  38. Laird PW (2010) Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 11:191–203

    Article  CAS  PubMed  Google Scholar 

  39. Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673

    Article  CAS  PubMed  Google Scholar 

  40. Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  CAS  PubMed  Google Scholar 

  41. Lin Z, Hegarty JP, Cappel JA, Yu W, Chen X, Faber P, Wang Y, et al. (2011) Identification of diseaseassociated DNA methylation in intestinal tissues from patients with inflammatory bowel disease. Clin Genet 80(1):59–67

    Google Scholar 

  42. Li Yim AYF, Duijvis NW, Zhao J, De Jonge WJ, D’Haens G, Mannens M, Mul A, Te Velde AA, Henneman P (2016) Peripheral blood methylation profiling of female Crohn’s disease patients. Clin Epigenetics 8:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu N, Pan T (2015) RNA epigenetics. Transl Res 165:28–35

    Article  CAS  PubMed  Google Scholar 

  45. Liu XS, Wu H, Ji X, Stelzer Y, Wu XB, Czauderna S, Shu J, Dadon D, Young RA, Jaenisch R (2016) Editing DNA methylation in the mammalian genome. Cell 167:233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lobaton T, Azuara D, Rodriguez-Moranta F, Loayza C, Sanjuan X, De Oca J, Fernandez-Robles A, Guardiola J, Capella G (2014) Relationship between methylation and colonic inflammation in inflammatory bowel disease. World J Gastroenterol 20:10591–10598

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373

    Article  CAS  PubMed  Google Scholar 

  48. Maher B (2008) Personal genomes: the case of the missing heritability. Nature 456 (7218):18–21

    Google Scholar 

  49. Mcdermott E, Ryan EJ, Tosetto M, Gibson D, Burrage J, Keegan D, Byrne K, Crowe E, Sexton G, Malone K, Harris RA, Kellermayer R, Mill J, Cullen G, Doherty GA, Mulcahy H, Murphy TM (2016) DNA methylation profiling in inflammatory bowel disease provides new insights into disease pathogenesis. J Crohns Colitis 10:77–86

    Article  PubMed  Google Scholar 

  50. Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20:300–307

    Article  CAS  PubMed  Google Scholar 

  51. Momozawa Y, Dmitrieva J, Theatre E, Deffontaine V, Rahmouni S, Charloteaux B, Crins F, Docampo E, Elansary M, Gori AS, Lecut C, Mariman R, Mni M, Oury C, Altukhov I, Alexeev D, Aulchenko Y, Amininejad L, Bouma G, Hoentjen F, Lowenberg M, Oldenburg B, Pierik MJ, Vander Meulen-De Jong AE, Van Der Woude CJ, Visschedijk MC, Lathrop M, Hugot JP, Weersma RK, De Vos M, Franchimont D, Vermeire S, Kubo M, Louis E, Georges M, Abraham C, Achkar JP, Ahmad T, Ananthakrishnan AN, Andersen V, Anderson CA, Andrews JM, Annese V, Aumais G, Baidoo L, Baldassano RN, Bampton PA, Barclay M, Barrett JC, Bayless TM, Bethge J, Bitton A, Boucher G, Brand S, Brandt B, Brant SR, Buning C, Chew A, Cho JH, Cleynen I, Cohain A, Croft A, Daly MJ, D’Amato M, Danese S, De Jong D, Denapiene G, Denson LA, Devaney KL, Dewit O, D’Inca R, Dubinsky M, Duerr RH, Edwards C, Ellinghaus D, Essers J, Ferguson LR, Festen EA, Fleshner P, Florin T, Franke A, Fransen K, Gearry R, Gieger C, Glas J, Goyette P, Green T, Griffiths AM, Guthery SL, Hakonarson H, Halfvarson J, Hanigan K, Haritunians T, Hart A, Hawkey C, Hayward NK, Hedl M, Henderson P, Hu XH, Huang HL et al (2018) IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nat Commun 9(1):2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nimmo ER, Prendergast JG, Aldhous MC, Kennedy NA, Henderson P, Drummond HE, Ramsahoye BH, Wilson DC, Semple CA, Satsangi J (2011) Genome-wide methylation profiling in Crohn’s disease identifies altered epigenetic regulation of key host defense mechanisms including the Th17 pathway. Inflamm Bowel Dis 18(5):889–899

    Google Scholar 

  53. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  PubMed  Google Scholar 

  54. Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19:219–220

    Article  CAS  PubMed  Google Scholar 

  55. Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin SP, Allis CD, Cheng X, Bestor TH (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448:714–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ooi SKT, O’Donnell AH, Bestor TH (2009) Mammalian cytosine methylation at a glance. J Cell Sci 122:2787–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Orholm, M, Binder V, Sørensen TI, Rasmussen LP, Kyvik KO (2000) Concordance of inflammatory bowel disease among Danish twins. Results of a Nationwide Study. Scand J Gastroenterol 35(10):1075–1081

    Google Scholar 

  58. Pan WH, Sommer F, Falk-Paulsen M, Ulas T, Best P, Fazio A, Kachroo P, Luzius A, Jentzsch M, Rehman A, Muller F, Lengauer T, Walter J, Kunzel S, Baines JF, Schreiber S, Franke A, Schultze JL, Backhed F, Rosenstiel P (2018) Exposure to the gut microbiota drives distinct methylome and transcriptome changes in intestinal epithelial cells during postnatal development. Genome Med 10:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pickert G, Neufert C, Leppkes M, Zheng Y, Wittkopf N, Warntjen M, Lehr HA, Hirth S, Weigmann B, Wirtz S, Ouyang W, Neurath MF, Becker C (2009) STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med 206:1465–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rakyan VK, Beyan H, Down TA, Hawa MI, Maslau S, Aden D, Daunay A, Busato F, Mein CA, Manfras B, Dias KR, Bell CG, Tost J, Boehm BO, Beck S, Leslie RD (2011) Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet 7:e1002300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Renz H, von Mutius E, Brandtzaeg P, Cookson WO, Autenrieth IB, Haller D (2011) Gene-environment interactions in chronic inflammatory disease. Nat Immunol 12(4):273–277

    Google Scholar 

  62. Robertson KD (2002) DNA methylation and chromatin – unraveling the tangled web. Oncogene 21:5361–5379

    Article  CAS  PubMed  Google Scholar 

  63. Sadler T, Bhasin JM, Xu Y, Barnholz-Sloan J, Chen Y, Ting AH, Stylianou E (2016) Genome-wide analysis of DNA methylation and gene expression defines molecular characteristics of Crohn’s disease-associated fibrosis. Clin Epigenetics 8:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Salhab A, Nordstrom K, Gasparoni G, Kattler K, Ebert P, Ramirez F, Arrigoni L, Muller F, Polansky JK, Cadenas C, G. Hengstler J, Lengauer T, Manke T, Consortium D, Walter J (2018) A comprehensive analysis of 195 DNA methylomes reveals shared and cell-specific features of partially methylated domains. Genome Biol 19:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sawyers CL (2008) The cancer biomarker problem. Nature 452(7187):548–552

    Google Scholar 

  66. Schreiber S, Rosenstiel P, Albrecht M, Hampe J, Krawczak M (2005) Genetics of Crohn disease, an archetypal inflammatory barrier disease. Nat Rev Genet 6:376–388

    Article  CAS  PubMed  Google Scholar 

  67. Schultze JL, Consortium S, Rosenstiel P (2018) Systems medicine in chronic inflammatory diseases. Immunity 48:608–613

    Article  CAS  PubMed  Google Scholar 

  68. Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R, Schwartz S, Yosef N, Malboeuf C, Lu D, Trombetta JJ, Gennert D, Gnirke A, Goren A, Hacohen N, Levin JZ, Park H, Regev A (2013) Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498:236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stunnenberg HG, Hirst M, Consortium IHE (2016) The International Human Epigenome Consortium: a blueprint for scientific collaboration and discovery. Cell 167:1897–1897, (vol 167, pp 1145, 2016)

    Article  CAS  PubMed  Google Scholar 

  70. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476

    Article  CAS  PubMed  Google Scholar 

  71. Tahara T, Shibata T, Okubo M, Ishizuka T, Nakamura M, Nagasaka M, Nakagawa Y, Ohmiya N, Arisawa T, Hirata I (2014) DNA methylation status of epithelial-mesenchymal transition (EMT) – related genes is associated with severe clinical phenotypes in ulcerative colitis (UC). PLoS One 9:e107947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Taman H, Fenton CG, Hensel IV, Anderssen E, Florholmen J, Paulssen RH (2018) Genome-wide DNA methylation in treatment-naïve ulcerative colitis. J Crohns Colitis 12:1338–1347

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tschurtschenthaler M, Kachroo P, Heinsen FA, Adolph TE, Ruhlemann MC, Klughammer J, Offner FA, Ammerpohl O, Krueger F, Smallwood S, Szymczak S, Kaser A, Franke A (2016) Paternal chronic colitis causes epigenetic inheritance of susceptibility to colitis. Sci Rep 6:31640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Van Der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71:241–260

    Article  CAS  PubMed  Google Scholar 

  75. Ventham NT, Kennedy NA, Adams AT, Kalla R, Heath S, O’Leary KR, Drummond H, Wilson DC, Gut IG, Nimmo ER, Satsangi J, Consortium IB, Consortiumw IC (2016) Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease. Nat Commun 7:13507

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Waddington CH (1942) The epigenotype. Endeavour 1:18–20

    Google Scholar 

  77. Welz PS, Wullaert A, Vlantis K, Kondylis V, Fernandez-Majada V, Ermolaeva M, Kirsch P, Sterner-Kock A, Van Loo G, Pasparakis M (2011) FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477:330–U102

    Article  CAS  PubMed  Google Scholar 

  78. Yamanaka S, Blau HM (2010) Nuclear reprogramming to a pluripotent state by three approaches. Nature 465:704–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20:259–266

    Article  CAS  PubMed  Google Scholar 

  80. Zheng X, Tsuchiya K, Okamoto R, Iwasaki M, Kano Y, Sakamoto N, Nakamura T, Watanabe M (2011) Suppression of Hath1 gene expression directly regulated by Hes1 via notch signaling is associated with goblet cell depletion in ulcerative colitis. Inflamm Bowel Dis 17:2251

    Article  PubMed  Google Scholar 

  81. Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q, Abbas AR, Modrusan Z, Ghilardi N, De Sauvage FJ, Ouyang W (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14:282–289

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the BMBF grant SysINFLAME, the EU grant SYSCID #733100, the Deutsche Forschungsgemeinschaft (DFG) under contract numbers SFB1182 C2, and the Cluster of Excellence Precision medicine in chronic inflammation. We apologize to those researchers whose important contributions to the field we were unable to include.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Rosenstiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fazio, A., Bordoni, D., Rosenstiel, P. (2019). Inflammatory Bowel Disease and Epigenetics. In: Hedin, C., Rioux, J., D'Amato, M. (eds) Molecular Genetics of Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-28703-0_9

Download citation

Publish with us

Policies and ethics