Skip to main content

IBD Genomic Risk Loci and Overlap with Other Inflammatory Diseases

  • Chapter
  • First Online:
Molecular Genetics of Inflammatory Bowel Disease

Abstract

Although it has been known for decades that susceptibility to inflammatory bowel disease (IBD) and its major subtypes is partly inherited, significant progress has been made in elucidating the genetic architecture of this disease only recently. The advent of genome-wide association studies (GWAS), together with the emergence of collaborative consortia, laid the foundation for extremely powerful genetic meta-analyses. This has led to crucial advances in the understanding of the pathophysiology of IBD, facilitating the identification of the underlying candidate pathogenic mechanisms. To date, approximately 250 IBD predisposing loci have been identified, indicating the immense complexity of the disease. The functional characterization of the genes mapping to these loci has particularly underscored the importance of immune system-related pathways in the development of IBD, showing a significant overlap of IBD with other immune-mediated disorders (IMDs) in the genetic architecture. However, despite the considerable advances in characterizing the genetic basis of this disease, aspects of the intricacy of IBD pathogenesis remain enigmatic and likely larger, as well as complementary data sets are required. In this chapter, we review the advancements in deciphering the genetic basis of IBD from candidate gene studies to GWAS and powerful meta-analyses and discuss the genetic overlaps of IBD with other IMDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hugot J-P, Laurent-Puig P, Gower-Rousseau C et al (1996) Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature 379:821–823. https://doi.org/10.1038/379821a0

    Article  CAS  PubMed  Google Scholar 

  2. Hugot J-P, Chamaillard M, Zouali H et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603. https://doi.org/10.1038/35079107

    Article  CAS  PubMed  Google Scholar 

  3. Ogura Y, Bonen DK, Inohara N et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–606. https://doi.org/10.1038/35079114

    Article  CAS  PubMed  Google Scholar 

  4. Yamazaki K, McGovern D, Ragoussis J et al (2005) Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn’s disease. Hum Mol Genet 14:3499–3506. https://doi.org/10.1093/hmg/ddi379

    Article  CAS  PubMed  Google Scholar 

  5. Klein RJ, Zeiss C, Chew EY et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389. https://doi.org/10.1126/science.1109557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Asakura H, Tsuchiya M, Aiso S et al (1982) Association of the human lymphocyte-DR2 antigen with Japanese ulcerative colitis. Gastroenterology 82:413–418

    CAS  PubMed  Google Scholar 

  7. Tomlinson IP, Bodmer WF (1995) The HLA system and the analysis of multifactorial genetic disease. Trends Genet 11:493–498

    Article  CAS  PubMed  Google Scholar 

  8. McGovern DPB, Hysi P, Ahmad T et al (2005) Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum Mol Genet 14:1245–1250. https://doi.org/10.1093/hmg/ddi135

    Article  CAS  PubMed  Google Scholar 

  9. Franke A, Ruether A, Wedemeyer N et al (2006) No association between the functional CARD4 insertion/deletion polymorphism and inflammatory bowel diseases in the German population. Gut 55:1679–1680. https://doi.org/10.1136/gut.2006.104646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tremelling M, Hancock L, Bredin F et al (2006) Complex insertion/deletion polymorphism in NOD1 (CARD4) is not associated with inflammatory bowel disease susceptibility in East Anglia panel. Inflamm Bowel Dis 12:967–971. https://doi.org/10.1097/01.mib.0000234131.89971.e5

    Article  PubMed  Google Scholar 

  11. Van Limbergen J, Nimmo ER, Russell RK et al (2007) Investigation of NOD1/CARD4 variation in inflammatory bowel disease using a haplotype-tagging strategy. Hum Mol Genet 16:2175–2186. https://doi.org/10.1093/hmg/ddm169

    Article  CAS  PubMed  Google Scholar 

  12. Van Limbergen J, Russell RK, Nimmo ER et al (2007) Contribution of the NOD1/CARD4 insertion/deletion polymorphism +32656 to inflammatory bowel disease in Northern Europe. Inflamm Bowel Dis 13:882–889. https://doi.org/10.1002/ibd.20124

    Article  PubMed  Google Scholar 

  13. Van Limbergen J, Russell RK, Nimmo ER, Satsangi J (2007) The genetics of inflammatory bowel disease. Am J Gastroenterol 102:2820–2831. https://doi.org/10.1111/j.1572-0241.2007.01527.x

    Article  PubMed  Google Scholar 

  14. Ho G-T, Moodie FM, Satsangi J (2003) Multidrug resistance 1 gene (P-glycoprotein 170): an important determinant in gastrointestinal disease? Gut 52:759–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Annese V, Valvano M-R, Palmieri O et al (2006) Multidrug resistance 1 gene in inflammatory bowel disease: a meta-analysis. World J Gastroenterol 12:3636–3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zintzaras E (2012) Is there evidence to claim or deny association between variants of the multidrug resistance gene (MDR1 or ABCB1) and inflammatory bowel disease? Inflamm Bowel Dis 18:562–572. https://doi.org/10.1002/ibd.21728

    Article  PubMed  Google Scholar 

  17. Cao Y, Qu C, Chen Y et al (2015) Association of ABCB1 polymorphisms and ulcerative colitis susceptibility. Int J Clin Exp Pathol 8:943–947

    CAS  PubMed  PubMed Central  Google Scholar 

  18. van Heel DA, Franke L, Hunt KA et al (2007) A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat Genet 39:827–829. https://doi.org/10.1038/ng2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Todd JA, Walker NM, Cooper JD et al (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39:857–864. https://doi.org/10.1038/ng2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhernakova A, Alizadeh BZ, Bevova M et al (2007) Novel association in chromosome 4q27 region with rheumatoid arthritis and confirmation of type 1 diabetes point to a general risk locus for autoimmune diseases. Am J Hum Genet 81:1284–1288. https://doi.org/10.1086/522037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sawalha AH, Kaufman KM, Kelly JA et al (2007) Genetic association of interleukin-21 polymorphisms with systemic lupus erythematosus. Ann Rheum Dis 67:458–461. https://doi.org/10.1136/ard.2007.075424

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y, Helms C, Liao W et al (2008) A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet 4:e1000041. https://doi.org/10.1371/journal.pgen.1000041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Spolski R, Leonard WJ (2014) Interleukin-21: a double-edged sword with therapeutic potential. Nat Rev Drug Discov 13:379–395. https://doi.org/10.1038/nrd4296

    Article  CAS  PubMed  Google Scholar 

  24. Yang L, Anderson DE, Baecher-Allan C et al (2008) IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 454:350–352. https://doi.org/10.1038/nature07021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Monteleone G, Monteleone I, Fina D et al (2005) Interleukin-21 enhances T-helper cell type I signaling and interferon-gamma production in Crohn’s disease. Gastroenterology 128:687–694

    Article  CAS  PubMed  Google Scholar 

  26. Festen EAM, Goyette P, Scott R et al (2009) Genetic variants in the region harbouring IL2/IL21 associated with ulcerative colitis. Gut 58:799–804. https://doi.org/10.1136/gut.2008.166918

    Article  CAS  PubMed  Google Scholar 

  27. Glas J, Stallhofer J, Ripke S et al (2009) Novel genetic risk markers for ulcerative colitis in the IL2/IL21 region are in epistasis with IL23R and suggest a common genetic background for ulcerative colitis and celiac disease. Am J Gastroenterol 104:1737–1744. https://doi.org/10.1038/ajg.2009.163

    Article  CAS  PubMed  Google Scholar 

  28. Márquez A, Orozco G, Martínez A et al (2009) Novel association of the interleukin 2-interleukin 21 region with inflammatory bowel disease. Am J Gastroenterol 104:1968–1975. https://doi.org/10.1038/ajg.2009.224

    Article  CAS  PubMed  Google Scholar 

  29. Anderson CA, Boucher G, Lees CW et al (2011) Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 43:246–252. https://doi.org/10.1038/ng.764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Robinson J, Waller MJ, Parham P et al (2003) IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res 31:311–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fisher SA, Tremelling M, Anderson CA et al (2008) Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat Genet 40:710–712. https://doi.org/10.1038/ng.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kugathasan S, Baldassano RN, Bradfield JP et al (2008) Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat Genet 40:1211–1215. https://doi.org/10.1038/ng.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Franke A, Balschun T, Karlsen TH et al (2008) Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet 40:1319–1323. https://doi.org/10.1038/ng.221

    Article  CAS  PubMed  Google Scholar 

  34. Stokkers PC, Reitsma PH, Tytgat GN, van Deventer SJ (1999) HLA-DR and -DQ phenotypes in inflammatory bowel disease: a meta-analysis. Gut 45:395–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fernando MMA, Stevens CR, Walsh EC et al (2008) Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet 4:e1000024. https://doi.org/10.1371/journal.pgen.1000024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Orchard TR, Dhar A, Simmons JD et al (2001) MHC class I chain-like gene A (MICA) and its associations with inflammatory bowel disease and peripheral arthropathy. Clin Exp Immunol 126:437–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. International MHC and Autoimmunity Genetics Network, Rioux JD, Goyette P et al (2009) Mapping of multiple susceptibility variants within the MHC region for 7 immune-mediated diseases. Proc Natl Acad Sci U S A 106:18680–18685. https://doi.org/10.1073/pnas.0909307106

    Article  Google Scholar 

  38. Goyette P, Boucher G, Mallon D et al (2015) High density mapping of the MHC identifies a shared role for HLA-DRB1∗01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat Genet 47:172–179. https://doi.org/10.1038/ng.3176.High

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cleynen I, Boucher G, Jostins L et al (2016) Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet 387:156–167. https://doi.org/10.1016/S0140-6736(15)00465-1

    Article  PubMed  PubMed Central  Google Scholar 

  40. Han B, Akiyama M, Kim K-K et al (2018) Amino acid position 37 of HLA-DRβ1 affects susceptibility to Crohn’s disease in Asians. Hum Mol Genet 27:3901–3910. https://doi.org/10.1093/hmg/ddy285

    Article  CAS  PubMed  Google Scholar 

  41. Duerr RH, Taylor KD, Brant SR et al (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science (80-) 314:1461–1463. https://doi.org/10.1126/science.1135245

    Article  CAS  Google Scholar 

  42. Van Limbergen J, Russell RK, Nimmo ER et al (2007) IL23R Arg381Gln is associated with childhood onset inflammatory bowel disease in Scotland. Gut 56:1173–1174. https://doi.org/10.1136/gut.2007.122069

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yamazaki K, Onouchi Y, Takazoe M et al (2007) Association analysis of genetic variants in IL23R, ATG16L1 and 5p13.1 loci with Crohn’s disease in Japanese patients. J Hum Genet 52:575–583. https://doi.org/10.1007/s10038-007-0156-z

    Article  CAS  PubMed  Google Scholar 

  44. Lakatos PL, Szamosi T, Szilvasi A et al (2008) ATG16L1 and IL23 receptor (IL23R) genes are associated with disease susceptibility in Hungarian CD patients. Dig Liver Dis 40:867–873. https://doi.org/10.1016/J.DLD.2008.03.022

    Article  CAS  PubMed  Google Scholar 

  45. Tremelling M, Cummings F, Fisher SA et al (2007) IL23R variation determines susceptibility but not disease phenotype in inflammatory bowel disease. Gastroenterology 132:1657–1664. https://doi.org/10.1053/J.GASTRO.2007.02.051

    Article  CAS  PubMed  Google Scholar 

  46. Ballester V, Guo X, Vendrell R et al (2014) Association of NOD2 and IL23R with inflammatory bowel disease in Puerto Rico. PLoS One 9:e108204. https://doi.org/10.1371/journal.pone.0108204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hampe J, Franke A, Till A et al (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39:207–211. https://doi.org/10.1038/ng1954

    Article  CAS  PubMed  Google Scholar 

  48. Rioux JD, Xavier RJ, Taylor KD et al (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39:596–604. https://doi.org/10.1038/ng2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Burton PR, Clayton DG, Cardon LR et al (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678. https://doi.org/10.1038/nature05911

    Article  CAS  Google Scholar 

  50. Goyette P, Lefebvre C, Ng A et al (2008) Gene-centric association mapping of chromosome 3p implicates MST1 in IBD pathogenesis. Mucosal Immunol 1:131–138. https://doi.org/10.1038/mi.2007.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Parkes M, Barrett JC, Prescott NJ et al (2007) Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet 39:830–832. https://doi.org/10.1038/ng2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brest P, Lapaquette P, Souidi M et al (2011) A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat Genet 43:242–245. https://doi.org/10.1038/ng.762

    Article  CAS  PubMed  Google Scholar 

  53. Lapaquette P, Bringer M-A, Darfeuille-Michaud A (2012) Defects in autophagy favour adherent-invasive Escherichia coli persistence within macrophages leading to increased pro-inflammatory response. Cell Microbiol 14:791–807. https://doi.org/10.1111/j.1462-5822.2012.01768.x

    Article  CAS  PubMed  Google Scholar 

  54. Franke A, Fischer A, Nothnagel M et al (2008) Genome-wide association analysis in sarcoidosis and Crohn’s disease unravels a common susceptibility locus on 10p12.2. Gastroenterology 135:1207–1215. https://doi.org/10.1053/j.gastro.2008.07.017

    Article  CAS  PubMed  Google Scholar 

  55. Thiébaut R, Esmiol S, Lecine P et al (2016) Characterization and genetic analyses of new genes coding for NOD2 interacting proteins. PLoS One 11:e0165420. https://doi.org/10.1371/journal.pone.0165420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Power C, Elliott J (2006) Cohort profile: 1958 British birth cohort (National Child Development Study). Int J Epidemiol 35:34–41. https://doi.org/10.1093/ije/dyi183

    Article  PubMed  Google Scholar 

  57. Barrett JC, Lee JC, Lees CW et al (2009) Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat Genet 41:1330–1334. https://doi.org/10.1038/ng.483

    Article  CAS  PubMed  Google Scholar 

  58. Darsigny M, Babeu J-P, Dupuis A-A et al (2009) Loss of hepatocyte-nuclear-factor-4α affects colonic ion transport and causes chronic inflammation resembling inflammatory bowel disease in mice. PLoS One 4:e7609. https://doi.org/10.1371/journal.pone.0007609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Marcil V, Seidman E, Sinnett D et al (2010) Modification in oxidative stress, inflammation and lipoprotein assembly in response to hepatocyte nuclear factor 4α knockdown in intestinal epithelial cells. J Biol Chem 285:40448–40460. https://doi.org/10.1074/jbc.M110.155358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ivanov AI, Nusrat A, Parkos CA. The epithelium in inflammatory bowel disease: potential role of endocytosis of junctional proteins in barrier disruption. In Novartis Foundation symposium 2004 Nov 12 (Vol. 263, p. 115–124). Chichester; New York; John Wiley.

    Google Scholar 

  61. van Sommeren S, Visschedijk MC, Festen EAM et al (2011) HNF4α and CDH1 are associated with ulcerative colitis in a Dutch cohort. Inflamm Bowel Dis 17:1714–1718. https://doi.org/10.1002/ibd.21541

    Article  PubMed  Google Scholar 

  62. Marcil V, Sinnett D, Seidman E et al (2012) Association between genetic variants in the HNF4A gene and childhood-onset Crohn’s disease. Genes Immun 13:556–565. https://doi.org/10.1038/gene.2012.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Spenlé C, Hussenet T, Lacroute J et al (2012) Dysregulation of laminins in intestinal inflammation. Pathol Biol 60:41–47. https://doi.org/10.1016/J.PATBIO.2011.10.005

    Article  PubMed  Google Scholar 

  64. McGovern DPB, Jones MR, Taylor KD et al (2010) Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn’s disease. Hum Mol Genet 19:3468–3476. https://doi.org/10.1093/hmg/ddq248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamazaki K, Umeno J, Takahashi A et al (2013) A genome-wide association study identifies 2 susceptibility loci for Crohn’s disease in a Japanese population. Gastroenterology 144:781–788. https://doi.org/10.1053/j.gastro.2012.12.021

    Article  CAS  PubMed  Google Scholar 

  66. Julià A, Domènech E, Ricart E et al (2013) A genome-wide association study on a southern European population identifies a new Crohn’s disease susceptibility locus at RBX1-EP300. Gut 62:1440–1445. https://doi.org/10.1136/gutjnl-2012-302865

    Article  CAS  PubMed  Google Scholar 

  67. Yang SK, Hong M, Choi H et al (2015) Immunochip analysis identification of 6 additional susceptibility loci for Crohn’s disease in Koreans. Inflamm Bowel Dis 21:1–7. https://doi.org/10.1097/MIB.0000000000000268

    Article  PubMed  Google Scholar 

  68. Ye BD, Choi H, Hong M et al (2016) Identification of ten additional susceptibility loci for ulcerative colitis through immunochip analysis in Koreans. Inflamm Bowel Dis 22:13–19. https://doi.org/10.1097/MIB.0000000000000584

    Article  PubMed  Google Scholar 

  69. Asano K, Matsushita T, Umeno J et al (2009) A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population. Nat Genet 41:1325–1329. https://doi.org/10.1038/ng.482

    Article  CAS  PubMed  Google Scholar 

  70. Franke A, Balschun T, Sina C et al (2010) Genome-wide association study for ulcerative colitis identifies risk loci at 7q22 and 22q13 (IL17REL). Nat Genet 42:292–294. https://doi.org/10.1038/ng.553

    Article  CAS  PubMed  Google Scholar 

  71. Juyal G, Negi S, Sood A et al (2015) Genome-wide association scan in north Indians reveals three novel HLA-independent risk loci for ulcerative colitis. Gut 64:571–579. https://doi.org/10.1136/gutjnl-2013-306625

    Article  CAS  PubMed  Google Scholar 

  72. Yang S-K, Hong M, Zhao W et al (2013) Genome-wide association study of ulcerative colitis in Koreans suggests extensive overlapping of genetic susceptibility with Caucasians. Inflamm Bowel Dis 19:954–966. https://doi.org/10.1097/MIB.0b013e3182802ab6

    Article  PubMed  Google Scholar 

  73. Fuyuno Y, Yamazaki K, Takahashi A et al (2016) Genetic characteristics of inflammatory bowel disease in a Japanese population. J Gastroenterol 51:672–681. https://doi.org/10.1007/s00535-015-1135-3

    Article  CAS  PubMed  Google Scholar 

  74. Zhang Y, Tian L, Sleiman P et al (2018) Bayesian analysis of genome-wide inflammatory bowel disease data sets reveals new risk loci /631/208/205/2138 /631/208/176 article. Eur J Hum Genet 26:265–274. https://doi.org/10.1038/s41431-017-0041-y

    Article  CAS  PubMed  Google Scholar 

  75. IBDGenetics – Home page. https://www.ibdgenetics.org/. Accessed 30 Jan 2019

  76. Barrett JC, Hansoul S, Nicolae DL et al (2009) NIH public access. Nat Genet 40:955–962. https://doi.org/10.1038/NG.175.Genome-wide

    Article  Google Scholar 

  77. Silverberg MS, Cho JH, Rioux JD et al (2009) Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study. Nat Genet 41:216–220. https://doi.org/10.1038/ng.275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. McGovern DPBB, Gardet A, Törkvist L et al (2010) Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat Genet 42:332–337. https://doi.org/10.1038/ng.549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Franke A, McGovern DPB, Barrett JC et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42:1118–1125. https://doi.org/10.1038/ng.717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jostins L, Ripke S, Weersma RK et al (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–124. https://doi.org/10.1038/nature11582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu JZ, van Sommeren S, Huang H et al (2015) Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 47:979–986. https://doi.org/10.1038/ng.3359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brant SR, Okou DT, Simpson CL et al (2017) Genome-wide association study identifies African-specific susceptibility loci in African Americans with inflammatory bowel disease. Gastroenterology 152:206–217.e2. https://doi.org/10.1053/j.gastro.2016.09.032

    Article  CAS  PubMed  Google Scholar 

  83. Zhong B, Liu X, Wang X et al (2012) Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. Nat Immunol 13:1110–1117. https://doi.org/10.1038/ni.2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. De Lange KM, Moutsianas L, Lee JC et al (2017) Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet 49:256–261. https://doi.org/10.1038/ng.3760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hong M, Ye BD, Yang SK et al (2018) Immunochip meta-analysis of inflammatory bowel disease identifies three novel loci and four novel associations in previously reported loci. J Crohns Colitis 12:730–741. https://doi.org/10.1093/ecco-jcc/jjy002

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kakuta Y, Kawai Y, Naito T et al (2018) A genome-wide association study identifying RAP1A as a novel susceptibility gene for Crohn’s disease in Japanese individuals. J Crohns Colitis. https://doi.org/10.1093/ecco-jcc/jjy197

  87. Franke A (2017) Inflammatory bowel disease: a global disease that needs a broader ensemble of populations. Gastroenterology 152:14–16. https://doi.org/10.1053/J.GASTRO.2016.11.026

    Article  PubMed  Google Scholar 

  88. Lee JC, Lyons PA, McKinney EF et al (2011) Gene expression profiling of CD8+ T cells predicts prognosis in patients with Crohn disease and ulcerative colitis. J Clin Invest 121:4170–4179. https://doi.org/10.1172/JCI59255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee JC, Espéli M, Anderson CA et al (2013) Human SNP links differential outcomes in inflammatory and infectious disease to a FOXO3-regulated pathway. Cell 155:57–69. https://doi.org/10.1016/J.CELL.2013.08.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee JC, Biasci D, Roberts R et al (2017) Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn’s disease. Nat Genet 49:262–268. https://doi.org/10.1038/ng.3755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Spalinger MR, Zeitz J, Biedermann L et al (2016) Genotype-phenotype associations of the CD-associated single nucleotide polymorphism within the gene locus encoding protein tyrosine phosphatase non-receptor type 22 in patients of the Swiss IBD cohort. PLoS One 11:e0160215. https://doi.org/10.1371/journal.pone.0160215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. West NR, Hegazy AN, Owens BMJ et al (2017) Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor–neutralizing therapy in patients with inflammatory bowel disease. Nat Med 23:579–589. https://doi.org/10.1038/nm.4307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Burke KE, Khalili H, Garber JJ et al (2018) Genetic markers predict primary nonresponse and durable response to anti–tumor necrosis factor therapy in ulcerative colitis. Inflamm Bowel Dis 24:1840–1848. https://doi.org/10.1093/ibd/izy083

    Article  PubMed  PubMed Central  Google Scholar 

  94. Pernat Drobež C, Ferkolj I, Potočnik U, Repnik K (2018) Crohn’s disease candidate gene alleles predict time to progression from inflammatory B1 to stricturing B2, or penetrating B3 phenotype. Genet Test Mol Biomarkers 22:143–151. https://doi.org/10.1089/gtmb.2017.0210

    Article  CAS  PubMed  Google Scholar 

  95. Zhang Y-Z, Li Y-Y (2014) Inflammatory bowel disease: pathogenesis. World J Gastroenterol 20:91–99. https://doi.org/10.3748/wjg.v20.i1.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bettelli E, Korn T, Oukka M, Kuchroo VK (2008) Induction and effector functions of T(H)17 cells. Nature 453:1051–1057. https://doi.org/10.1038/nature07036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yucesoy B, Talzhanov Y, Michael Barmada M et al (2016) Association of MHC region SNPs with irritant susceptibility in healthcare workers. J Immunotoxicol 13:738–744. https://doi.org/10.3109/1547691X.2016.1173135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Iida T, Onodera K, Nakase H (2017) Role of autophagy in the pathogenesis of inflammatory bowel disease. World J Gastroenterol 23:1944–1953. https://doi.org/10.3748/wjg.v23.i11.1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Teumer A, Qi Q, Nethander M et al (2016) Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. Aging Cell 15:811–824. https://doi.org/10.1111/acel.12490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu S, Im H, Bairoch A et al (2013) A chromosome-centric human proteome project (C-HPP) to characterize the sets of proteins encoded in chromosome 17. J Proteome Res 12:45–57. https://doi.org/10.1021/pr300985j

    Article  CAS  PubMed  Google Scholar 

  101. Vavricka S, Rogler G, Gantenbein C et al (2015) Chronological order of appearance of extraintestinal manifestations relative to the time of IBD diagnosis in the Swiss inflammatory bowel disease cohort. Inflamm Bowel Dis 21:1794–1800

    Article  PubMed  Google Scholar 

  102. Harbord M, Annese V, Vavricka S et al (2016) The first European evidence-based consensus on extra-intestinal manifestations in inflammatory bowel disease. J Crohns Colitis 10:239–254

    Article  PubMed  Google Scholar 

  103. Kim DH, Cheon JH (2016) Intestinal Behçet’s disease: a true inflammatory bowel disease or merely an intestinal complication of systemic vasculitis? Yonsei Med J 57:22–32. https://doi.org/10.3349/ymj.2016.57.1.22

    Article  CAS  PubMed  Google Scholar 

  104. Patel KV, Farrant P, Sanderson JD, Irving PM (2013) Hair loss in patients with inflammatory bowel disease. Inflamm Bowel Dis 19:1753–1763. https://doi.org/10.1097/MIB.0b013e31828132de

    Article  PubMed  Google Scholar 

  105. Navaneethan U, Zhu X, Lourdusamy D et al (2018) Colorectal cancer resection rates in patients with inflammatory bowel disease: a population-based study. Gastroenterol Rep 6:263–269. https://doi.org/10.1093/gastro/goy030

    Article  Google Scholar 

  106. Bryant RV, Schultz CG, Ooi S et al (2018) Obesity in inflammatory bowel disease: gains in adiposity despite high prevalence of myopenia and osteopenia. Nutrients 10:1192. https://doi.org/10.3390/nu10091192

    Article  CAS  PubMed Central  Google Scholar 

  107. Martin-Subero M, Anderson G, Kanchanatawan B et al (2016) Comorbidity between depression and inflammatory bowel disease explained by immune-inflammatory, oxidative and nitrosative stress; tryptophan catabolite; and gut–brain pathways. CNS Spectr 21:184–198. https://doi.org/10.1017/S1092852915000449

    Article  PubMed  Google Scholar 

  108. Hedin CRH, Vavricka SR, Stagg AJ et al (2019) The pathogenesis of extraintestinal manifestations: implications for IBD research, diagnosis and therapy. J Crohns Colitis 13:541–554. https://doi.org/10.1093/ecco-jcc/jjy191

    Article  CAS  PubMed  Google Scholar 

  109. MacArthur J, Bowler E, Cerezo M et al (2017) The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res 45:D896–D901. https://doi.org/10.1093/nar/gkw1133

    Article  CAS  PubMed  Google Scholar 

  110. Ellinghaus D, Jostins L, Spain SL et al (2016) Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet 48:510–518. https://doi.org/10.1038/ng.3528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Spekhorst LM, Visschedijk MC, Weersma RK, Festen EA (2015) Down the line from genome-wide association studies in inflammatory bowel disease: the resulting clinical benefits and the outlook for the future. Expert Rev Clin Immunol 11:33–44. https://doi.org/10.1586/1744666X.2015.990439

    Article  CAS  PubMed  Google Scholar 

  112. Lee FI, Bellary SV, Francis C (1990) Increased occurrence of psoriasis in patients with Crohn’s disease and their relatives. Am J Gastroenterol 85:962–963

    CAS  PubMed  Google Scholar 

  113. Nair R, Henseler T, Jenisch S et al (1997) Evidence for two psoriasis susceptibility loci (HLA and 17q) and two novel candidate regions (16q and 20p) by genome-wide scan. Hum Mol Genet 6:1349–1356. https://doi.org/10.1093/hmg/6.8.1349

    Article  CAS  PubMed  Google Scholar 

  114. Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452. https://doi.org/10.1093/nar/gku1003

    Article  CAS  PubMed  Google Scholar 

  115. de Vries AB (2015) Distinctive inflammatory bowel disease phenotype in primary sclerosing cholangitis. World J Gastroenterol 21:1956. https://doi.org/10.3748/wjg.v21.i6.1956

    Article  PubMed  PubMed Central  Google Scholar 

  116. Liu JZ, Hov JR, Folseraas T et al (2013) Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis. Nat Genet 45:670–675. https://doi.org/10.1038/ng.2616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Casella G, D’Incà R, Oliva L et al (2010) Prevalence of celiac disease in inflammatory bowel diseases: an IG-IBD multicentre study. Dig Liver Dis 42:175–178. https://doi.org/10.1016/j.dld.2009.08.005

    Article  PubMed  Google Scholar 

  118. Ghebranious N, McCarty CA, Wilke RA (2007) Clinical phenome scanning. Per Med 4:175–182. https://doi.org/10.2217/17410541.4.2.175

    Article  CAS  PubMed  Google Scholar 

  119. Castro VM, Apperson WK, Gainer VS et al (2014) Evaluation of matched control algorithms in EHR-based phenotyping studies: a case study of inflammatory bowel disease comorbidities. J Biomed Inform 52:105–111. https://doi.org/10.1016/J.JBI.2014.08.012

    Article  PubMed  PubMed Central  Google Scholar 

  120. Barrett JC, Hansoul S, Nicolae DL et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40:955–962. https://doi.org/10.1038/ng.175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Julià A, Domènech E, Chaparro M et al (2014) A genome-wide association study identifies a novel locus at 6q22.1 associated with ulcerative colitis. Hum Mol Genet 23:6927–6934. https://doi.org/10.1093/hmg/ddu398

    Article  CAS  PubMed  Google Scholar 

  122. Mirkov MU, Verstockt B, Cleynen I (2017) Genetics of inflammatory bowel disease: beyond NOD2. Lancet 2(3):224–234

    Google Scholar 

  123. Gooderham MJ, Papp KA, Lynde CW (2018) Shifting the focus – the primary role of IL-23 in psoriasis and other inflammatory disorders. J Eur Acad Dermatol Venereol 32(7):1111–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro D’Amato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hadizadeh, F. et al. (2019). IBD Genomic Risk Loci and Overlap with Other Inflammatory Diseases. In: Hedin, C., Rioux, J., D'Amato, M. (eds) Molecular Genetics of Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-28703-0_5

Download citation

Publish with us

Policies and ethics