Skip to main content

Quantile Estimation in a Generalized Asymmetric Distributional Setting

  • Conference paper
  • First Online:
Stochastic Models, Statistics and Their Applications (SMSA 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 294))

Included in the following conference series:

Abstract

Allowing for symmetry in distributions is often a necessity in statistical modelling. This paper studies a broad family of asymmetric densities, which in a regression setting shares basic philosophy with generalized (non)linear models. The main focus, however, for the family of densities studied here is quantile estimation instead of mean estimation. In a similar fashion, a broad family of conditional densities is considered in the regression setting. We discuss estimation of the parameters in the unconditional case, and establish an asymptotic normality result, with explicit expression for the asymptotic variance–covariance matrix. In the regression setting, we allow for flexible modelling and estimate nonparametrically the location and scale functions, leading to semiparametric estimation of conditional quantiles, again in the unifying framework of the considered broad family. The practical use of the proposed methods is illustrated in a real data application on locomotor performance in small and large terrestrial mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arellano-Valle, R.B., Genton, M.G.: On fundamental skew distributions. J. Multivar. Anal. 96(1), 93–116 (2005)

    Article  MathSciNet  Google Scholar 

  2. Azzalini, A.: A class of distributions which includes the normal ones. Scand. J. Stat. 12(2), 171–178 (1985)

    MathSciNet  MATH  Google Scholar 

  3. Azzalini, A.: Further results on a class of distributions which includes the normal ones. Statistica 46(2), 199–208 (1986)

    MathSciNet  MATH  Google Scholar 

  4. Bottai, M., Cai, B., McKeown, R.E.: Logistic quantile regression for bounded outcomes. Stat. Med. 29(2), 309–317 (2010)

    MathSciNet  Google Scholar 

  5. Columbu, S., Bottai, M.: Logistic quantile regression to model cognitive impairment in Sardinian cancer patients, In: Di Battista, T., Moreno, E., Racugno, W. (eds.) Topics on Methodological and Applied Statistical Inference, pp. 65–73. Springer (2016)

    Google Scholar 

  6. Cox, D.R., Reid, N.: Parameter orthogonality and approximate conditional inference. J. R. Stat. Soc. Ser. B: Methodol. 49(1), 1–39 (1987)

    MathSciNet  MATH  Google Scholar 

  7. Crow, E.L., Shimizu, K. (eds.): Lognormal Distributions: Theory and Applications. CRC Press (1988)

    Google Scholar 

  8. Fan, J., Gijbels, I.: Local Polynomial Modelling and Its Applications, vol. 66. CRC Press (1996)

    Google Scholar 

  9. Fernández, C., Steel, M.F.: On Bayesian modeling of fat tails and skewness. J. Am. Stat. Assoc. 93(441), 359–371 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Gijbels, I., Karim, R., Verhasselt, A.: On quantile-based asymmetric family of distributions: properties and inference. International Statistical Review, to appear. https://doi.org/10.1111/insr.12324

  11. Gijbels, I., Karim, R., Verhasselt, A.: Semiparametric quantile regression using quantile-based asymmetric family of densities (2019) (submitted for publication)

    Google Scholar 

  12. Gneiting, T.: Quantiles as optimal point forecasts. Int. J. Forecast. 27(2), 197–207 (2011)

    Article  Google Scholar 

  13. Gourieroux, C., Monfort, A., Trognon, A.: Pseudo maximum likelihood methods: theory. Econometrica 52(3), 681–700 (1984)

    Article  MathSciNet  Google Scholar 

  14. Iriarte-Díaz, J.: Differential scaling of locomotor performance in small and large terrestrial mammals. J. Exp. Biol. 205(18), 2897–2908 (2002)

    Google Scholar 

  15. Jones, M.: On families of distributions with shape parameters. Int. Stat. Rev. 83(2), 175–192 (2015)

    Article  MathSciNet  Google Scholar 

  16. Jung, S.-H.: Quasi-likelihood for median regression models. J. Am. Stat. Assoc. 91(433), 251–257 (1996)

    Article  MathSciNet  Google Scholar 

  17. Karim, R., Gijbels, I., Verhasselt, A.: QBAsyDist: asymmetric distributions and quantile estimation. R package version 0.1.1. (2019). https://CRAN.R-project.org/package=QBAsyDist

  18. Koenker, R.: Quantile Regression. Cambridge University Press (2005)

    Google Scholar 

  19. Koenker, R., Bassett Jr., G.: Regression quantiles. Econometrica 46(1), 33–50 (1978)

    Article  MathSciNet  Google Scholar 

  20. Komunjer, I.: Quasi-maximum likelihood estimation for conditional quantiles. J. Econom. 128(1), 137–164 (2005)

    Article  MathSciNet  Google Scholar 

  21. Komunjer, I.: Asymmetric power distribution: theory and applications to risk measurement. J. Appl. Econom. 22(5), 891–921 (2007)

    Article  MathSciNet  Google Scholar 

  22. Kotz, S., Kozubowski, T.J., Podgórski, K.: Asymmetric Laplace distributions. The Laplace Distribution and Generalizations, pp. 133–178. Springer (2001) (chapter 3)

    Google Scholar 

  23. Kozubowski, T.J., Podgórski, K.: Log-Laplace distributions. Int. Math. J. 3(4), 467–495 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Lindsey, J.K.: Statistical Analysis of Stochastic Processes in Time. Cambridge University Press (2004)

    Google Scholar 

  25. McCullagh, P., Nelder, J.A.: Generalized Linear Models. Chapman and Hall (1998)

    Google Scholar 

  26. Mineo, A., Ruggieri, M.: A software tool for the exponential power distribution: the normalp package. J. Stat. Softw. 12(4), 1–24 (2005)

    Article  Google Scholar 

  27. Mu, Y., He, X.: Power transformation toward a linear regression quantile. J. Am. Stat. Assoc. 102(477), 269–279 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the FWO research project G.0826.15N (Flemish Science Foundation). The first author gratefully acknowledges support from the GOA/12/014 project of the Research Fund KU Leuven. The third author acknowledges support from the Flemish Science Foundation (FWO research grant 1518917N), and from the Special Research Fund (Bijzonder Onderzoeksfonds) of Hasselt University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irène Gijbels .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 A.1 Proof of Theorem 1

If Z is a random variable with asymmetric density \(f_{\alpha }(\cdot ; \mu ,\phi )\) in (1), then the cumulative distribution function of Z is given by

$$\begin{aligned} F_{\alpha }(z;\mu ,\phi )=\left\{ \begin{array}{lll} 2\alpha F\big ((1-\alpha ) (\frac{z-\mu }{\phi })\big ) &{} \quad \text {if} &{} \, z \le \mu \\ 2\alpha -1+2(1-\alpha ) F\big (\alpha (\frac{z-\mu }{\phi })\big ) &{} \quad \text {if} &{} \, z > \mu ,\\ \end{array} \right. \end{aligned}$$
(29)

and for any \(\beta \in (0,1)\), the \(\beta \)th-quantile of Z is

$$ F_{\alpha }^{-1}(\beta )=\left\{ \begin{array}{lll} \mu +\frac{\phi }{1-\alpha }F^{-1}\big (\frac{\beta }{2\alpha }\big ) &{} \quad \text {if} &{} \, \beta \le \alpha \\ \mu +\frac{\phi }{\alpha }F^{-1}\Big (\frac{1+\beta -2\alpha }{2(1-\alpha )}\Big )&{} \quad \text {if} &{}\, \beta > \alpha , \end{array} \right. $$

with \(F_{\alpha }^{-1}(\alpha )=\mu \). These results are given in Corollary 2.1 of Gijbels et al. [10]. Using Expression (29), we find

$$\begin{aligned} F^g_{\alpha }(y;\eta ,\phi )= & {} \Pr (Y\le y)=\Pr \left( g^{-1}(Z)\le y\right) =\Pr \left( Z\le g(y)\right) \nonumber \\= & {} \left\{ \begin{array}{lll} 2\alpha F\big ((1-\alpha ) (\frac{g(y)-g(\eta )}{\phi })\big ) &{} \quad \text {if} &{} \, y \le \eta \\ 2\alpha -1+2(1-\alpha ) F\big (\alpha (\frac{g(y)-g(\eta )}{\phi })\big ) &{} \quad \text {if} &{} \, y > \eta .\\ \end{array} \right. \end{aligned}$$

From this we then easily obtain (5).

1.2 A.2 Proof of Theorem 2

Theorem 3.4 of Gijbels et al. [10] states that under the assumptions (B1)–(B4), the MLE \(\widehat{\varvec{\theta }}^{(\text{ MLE })}_n\) centred with \(\varvec{\theta }\) is asymptotically normally distributed with mean vector \(\varvec{0}\) and variance–covariance matrix \([\mathcal {I}(\varvec{\theta })]^{-1}\):

$$ \sqrt{n}(\widehat{\varvec{\theta }}^{\text{ MLE }}_n-\varvec{\theta })\xrightarrow {d} {\mathcal {N}_3}(\varvec{0}, \mathcal {I}(\varvec{\theta })^{-1})\qquad \text {as}\quad n \rightarrow \infty , $$

where \(\mathcal {I}(\varvec{\theta })\) is the Fisher information matrix given in Proposition 3.2 of Gijbels et al. [10], with inverse

$$\begin{aligned} \mathcal {I}(\varvec{\theta })^{-1}&=\begin{bmatrix} \frac{\gamma _3 \phi ^2}{2\alpha (1-\alpha )(\gamma _1\gamma _3-\gamma _2^2)} &{} \frac{(1-2\alpha )\gamma _2\phi ^2}{2\alpha (1-\alpha )(\gamma _1\gamma _3-\gamma _2^2)} &{} \frac{\gamma _2\phi }{2(\gamma _1\gamma _3-\gamma _2^2)} \\ \frac{(1-2\alpha )\gamma _2\phi ^2}{2\alpha (1-\alpha )(\gamma _1\gamma _3-\gamma _2^2)} &{}[\mathcal {I}(\varvec{\theta })^{-1}]_{22} &{} \frac{(1-2\alpha )\gamma _1\phi }{2(\gamma _1\gamma _3-\gamma _2^2)} \\ \frac{\gamma _2\phi }{2(\gamma _1\gamma _3-\gamma _2^2)} &{} \frac{(1-2\alpha )\gamma _1\phi }{2(\gamma _1\gamma _3-\gamma _2^2)} &{} \frac{\alpha (1-\alpha )\gamma _1}{2(\gamma _1\gamma _3-\gamma _2^2)} \end{bmatrix}, \end{aligned}$$

with \([\mathcal {I}(\varvec{\theta })^{-1}]_{22}= [\mathcal {I}(\varvec{\theta }^g)^{-1}]_{22}\) where the latter quantity is stated in Theorem 2.

We want to find an asymptotic distribution for \( \widehat{\varvec{\theta }^g_n}^{\text{ MLE }} =(\widehat{\eta }^{\text{ MLE }}_n,\widehat{\phi }^{\text{ MLE }}_n,\widehat{\alpha }^{\text{ MLE }}_n)^T\), where \(\widehat{\eta }^{\text{ MLE }}_n=g^{-1}(\widehat{\mu }_n^{\text{ MLE }})\), which is a function of \(\widehat{\varvec{\theta }}^{\text{ MLE }}_n\). Using the multivariate delta method, we obtain

$$ {\displaystyle {{\sqrt{n}}[\widehat{\varvec{\theta }^g_n}^{\text{ MLE }}- \varvec{\theta }^g]\,{\xrightarrow {d}}\,{\mathcal {N}_3}\left( \varvec{0}, \mathcal {I}(\varvec{\theta }^g)^{-1}\right) }}, $$

with \(\mathcal {I}(\varvec{\theta }^g)^{-1}\) as given in the statement of Theorem 2. Similarly, the results in (2) can be obtained if \(\alpha \) is known.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gijbels, I., Karim, R., Verhasselt, A. (2019). Quantile Estimation in a Generalized Asymmetric Distributional Setting. In: Steland, A., Rafajłowicz, E., Okhrin, O. (eds) Stochastic Models, Statistics and Their Applications. SMSA 2019. Springer Proceedings in Mathematics & Statistics, vol 294. Springer, Cham. https://doi.org/10.1007/978-3-030-28665-1_2

Download citation

Publish with us

Policies and ethics