Skip to main content

Alternative Technique: Endoscopic Transseptumpellucidumrostrostomy (ETSPR)

  • Chapter
  • First Online:
Endoscopic Third Ventriculostomy
  • 302 Accesses

Abstract

In certain situations, endoscopic third ventriculostomy may be difficult to perform, such as in cases of thickening of the floor of the third ventricle and anatomical variations in the interpeduncular cistern by inflammatory reaction making it difficult to identify the anatomical parameters and perforation of the floor or when the interpeduncular cistern is reduced or occupied by an ectatic basilar artery. Therefore, alternatives to endoscopic fenestrations, diverting and restoring the CSF flow, are extremely useful. This chapter aims to present a study of the anatomical viability of performing a communication between the ventricular system and the longitudinal fissure of the brain, by means of fenestration of the rostral lamina of the corpus callosum, and establish the anatomical parameters for its performance as a surgical procedure by an endoscopic route.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuziki EJT, Dezena RA, Colli BO. Transseptumpellucidumrostrostomy: anatomical considerations and neuroendoscopic approach. Acta Cir Bras. 2011;26(Suppl 2):133–40. https://doi.org/10.1590/S0102-86502011000800025.

    Article  PubMed  Google Scholar 

  2. Gieger M, Cohen AR. The history of neuroendoscopy. In: Cohen AR, Hains SJ, editors. Minimally invasive technique in neurosurgery: concepts in neurosurgery. Baltimore: MD Williams & Wilkins; 1995. p. 1–5.

    Google Scholar 

  3. Li KW, Nelson C, Suk I, Jallo GI. Neuroendoscopy: past, present and future. Neurosurg Focus. 2005;19(6):E1.

    Article  Google Scholar 

  4. Abbot R. History of neuroendoscopy. Neurosurg Clin N Am. 2004;15:1–7.

    Article  Google Scholar 

  5. Andaluz N, Zucarello M. Fenestration of the lamina terminalis as a valuable adjunct in aneurysms surgery. Neurosurgery. 2004;55(5):1050–9.

    Article  Google Scholar 

  6. Komotar RJ, Olivi A, Rigamonti D, Tamargo RJ. Microsurgical fenestration of the lamina terminalis reduces the incidence of shunt-dependent hydrocephalus after aneurismal subarachnoid hemorrhage. Neurosurgery. 2002;51(6):1403–12.

    Article  Google Scholar 

  7. Kraemer JL, Gobbato PL, Andrade-Souza YM. Third ventriculostomy through the lamina terminalis for intracranial pressure monitoring after aneurysm surgery. Arq Neuropsiquiatr. 2002;60(4):932–4.

    Article  Google Scholar 

  8. Sindou M. Favourable influence of opening the lamina terminalis and Lilliequist’s membrane on the outcome of ruptured intracranial aneurysms: a study of 197 consecutive cases. Acta Neurochir. 1994;127:15–6.

    Article  CAS  Google Scholar 

  9. Tomasello F, D’Avella D, de Divitiis O. Does lamina terminalis fenestration reduce the incidence of chronic hydrocephalus after subarachnoid hemorrhage. Neurosurgery. 1999;45(4):827.

    Article  CAS  Google Scholar 

  10. Nakao N, Itakura T. Endoscopic lamina terminalis fenestration for treatment of hydrocephalus due to tuberculous meningitis. J Neurosurg. 2003;99:187.

    Article  Google Scholar 

  11. Daniel RT, Lee GYF, Reilley PL. Suprapineal recess: an alternative site for third ventriculostomy? J Neurosurg. 2004;101:518–20.

    Article  Google Scholar 

  12. Machado A. Neuroanatomia Funcional. São Paulo: A Atheneu; 1988.

    Google Scholar 

  13. Latarjet M, Liard AR. Anatomia humana. 2th ed. São Paulo: Panamericana; 1989.

    Google Scholar 

  14. Lancon JA, Haines DE, Raila FA, Parent AD, Vedanarayanan VV. Expanding cyst of the septum pellucidum. J Neurosurg. 1996;85:1127–34.

    Article  CAS  Google Scholar 

  15. Brodal A. Anatomia Neurológica: com correlações clínicas. 3th ed. São Paulo: Editora Roca; 1979.

    Google Scholar 

  16. Comissão de Terminologia Anatômica. Sociedade Brasileira de Anatomia. Terminologia Anatômica Internacional. São Paulo: Editora Manole; 2001.

    Google Scholar 

  17. Citow JS, Macdonald RL. Neuroanatomia e Neurofisiologia: uma revisão. São Paulo: Livraria Santos Editora; 2004.

    Google Scholar 

  18. Gray H, Goss CM. Anatomia. 29.ed. Rio de Janeiro: Guanabara Koogan; 1988.

    Google Scholar 

  19. Kiernam JA. Neuroanatomia Humana de Barr. Barueri: Editora Manole; 2003.

    Google Scholar 

  20. Martin JH. Neuroanatomy: text and atlas. 2th ed. Stamford: Appleton & Lange; 1996.

    Google Scholar 

  21. Türe U, Yasargil GM, Krisht AF. The arteries of the corpus callosum: a microsurgical anatomic study. Neurosurgery. 1996;39(6):1075–85.

    Article  Google Scholar 

  22. Jayatilaka ADP. An electron microscopic study of sheep arachnoid granulations. J Anat. 1965;99(3):635–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamashima T. Functional ultrastructure of cerebrospinal fluid drainage channels in human arachnoid villi. Neurosurgery. 1998;22(4):633–41.

    Article  Google Scholar 

  24. Bergsneider M, Egnor MR, Johnston M, Kranz D, Madsen JR, Mcallister Ii JP, et al. What we don’t (but should) know about hydrocephalus. J Neurosurg. 2006;104(3 Suppl Pediatrics):157–9.

    PubMed  Google Scholar 

  25. Conegero CI, Chopard RP. Tridimensional architecture of the collagen element in the arachnoid granulations in humans. Arq Neuropsiquiatr. 2003;61(3-A):561–5.

    Article  Google Scholar 

  26. Davson H, Domer FR, Hollingsworth JR. The mechanism of drainage of cerebrospinal fluid. Brain. 1973;96:329–36.

    Article  CAS  Google Scholar 

  27. Fox RJ, Walji AH, Mielke B, Petruk KC, Aronyk KE. Anatomic details of intradural channels in the parasagittal dura: a possible pathway for flow of cerebrospinal fluid. Neurosurgery. 1996;39(1):84–91.

    Article  CAS  Google Scholar 

  28. Go GK, Houthoff H, Hartsuiker J, Blaauw EH, Havinga P. Fluid secretion in arachnoid cysts as a clue to cerebrospinal fluid absorption at arachnoid granulation. J Neurosurg. 1986;65:642–8.

    Article  CAS  Google Scholar 

  29. Mawera G, Asala SA. The function of arachnoid villi/granulations revisited. Central Afr J Med. 1996;42(9):281–4.

    CAS  Google Scholar 

  30. Boulton M, Armstrong D, Flessner M, Hay J, Szalai JP, Johnston M. Raised intracranial pressure increases CSF drainage through arachnoid villi and extracranial lymphatics. Am J Physiol Regul Integr Comp Physiol. 1998;275(44):889–96.

    Article  Google Scholar 

  31. Greitz D, Hannerz J. A proposed model of cerebrospinal fluid circulation: observations with radionuclide cisternography. Am J Neuroradiol. 1996;17:431–8.

    CAS  PubMed  Google Scholar 

  32. Greitz D. Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev. 2004;27:145–65.

    PubMed  Google Scholar 

  33. Johnston M, Zakharov A, Koh L, Armstrong D. Subarachnoid injection of microfil reveals connections between cerebrospinal fluid and nasal lymphatics in trh non-human primate. Neuropathol Appl Neurobiol. 2005;31(6):632.

    Article  CAS  Google Scholar 

  34. Mollanji R, Bozanovic-Sosic R, Zakharov A, Makarian L, Johnston MG. Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure. Am J Physiol Regul Integr Comp Physiol. 2002;282:1593–9.

    Article  Google Scholar 

  35. Papaiconomou C, Bozanovic-Sosic R, Zakharov A, Johnston M. Does neonatal cerebrospinal fluid absorption occur via arachnoid projections or extracranial lymphatics? Am J Physiol Regul Integr Comp Physiol. 2002;283:869–76.

    Article  Google Scholar 

  36. Bergsneider M, Alwan AA, Falkson L, Rubinstein EH. The relationship of pulsatile cerebrospinal fluid flow to cerebral flow and intracranial pressure: a new theoretical model. Acta Neurochir. 1998;71(Suppl):266–8.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dezena, R.A. (2020). Alternative Technique: Endoscopic Transseptumpellucidumrostrostomy (ETSPR). In: Endoscopic Third Ventriculostomy. Springer, Cham. https://doi.org/10.1007/978-3-030-28657-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28657-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28656-9

  • Online ISBN: 978-3-030-28657-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics