Skip to main content

Reinforcement Learning for Assisted Visual-Inertial Robotic Calibration

  • Conference paper
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 10))

Abstract

We present a new approach to assisted intrinsic and extrinsic calibration with an observability-aware visual-inertial calibration system that guides the user through the calibration procedure by suggesting easy-to-perform motions that render the calibration parameters observable. This is done by identifying which subset of the parameter space is rendered observable with a rank-revealing decomposition of the Fisher information matrix, modeling calibration as a Markov decision process and using reinforcement learning to establish which discrete sequence of motions optimizes for the regression of the desired parameters. The goal is to address the assumption common to most calibration solutions: that sufficiently informative motions are provided by the operator. We do not make use of a process model and instead leverage an experience based approach that is broadly applicable to any platform. This is a step in the direction of long term autonomy and “power-on-and-go” robotic systems, making repeatable and reliable calibration accessible to the non-expert operator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The details of this implementation are omitted due to space limitations.

References

  1. Agarwal, S., Mierle, K.: Others: ceres solver. http://ceres-solver.org

  2. Autonomous Robotics and Perception Group (ARPG): VICalib visual-inertial calibration suite. https://github.com/arpg/vicalib (2016)

  3. Brookshire, J., Teller, S.: Extrinsic calibration from per-sensor egomotion. Robot.: Sci. Syst. VIII 5, 504–512 (2013)

    Google Scholar 

  4. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  5. François-Lavet, V., Fonteneau, R., Ernst, D.: How to discount deep reinforcement learning: towards new dynamic strategies. arXiv:1512.02011 (2015)

  6. Gibbs, B.P.: Advanced Kalman Filtering, Least-squares and Modeling: A Practical Handbook. Wiley, New York (2011)

    Google Scholar 

  7. Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press (2012)

    Google Scholar 

  8. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM (1998)

    Google Scholar 

  9. Hausman, K., Preiss, J., Sukhatme, G.S., Weiss, S.: Observability-Aware Trajectory Optimization for Self-Calibration with Application to UAVs. arxiv.org (2016)

    Google Scholar 

  10. Hermann, R., Krener, A.: Nonlinear controllability and observability. IEEE Trans. Autom. Control 22(5), 728–740 (1977)

    Article  MathSciNet  Google Scholar 

  11. Jauffret, C.: Observability and fisher information matrix in nonlinear regression. IEEE Trans. Aerosp. Electron. Syst. 43(2), 756–759 (2007)

    Google Scholar 

  12. Keivan, N., Sibley, G.: Constant-time monocular self-calibration. In: Robotics and Biomimetics (ROBIO), pp. 1590–1595 (2014)

    Google Scholar 

  13. Kelly, J., Sukhatme, G.S.: Visual-inertial sensor fusion: localization, mapping and sensor-to-sensor self-calibration. Int. J. Robot. Res. 30(1), 56–79 (2011)

    Article  Google Scholar 

  14. Kümmerle, R., Grisetti, G., Burgard, W.: Simultaneous calibration, localization, and mapping. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3716–3721. IEEE (2011)

    Google Scholar 

  15. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2548–2555. IEEE (2011)

    Google Scholar 

  16. Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale, P.: Keyframe-based visual-inertial odometry using nonlinear optimization. Int. J. Robot. Res. 34(3), 314–334 (2015)

    Article  Google Scholar 

  17. Levinson, J., Thrun, S.: Unsupervised calibration for multi-beam lasers. In: Experimental Robotics, pp. 179–193. Springer, Berlin (2014)

    Google Scholar 

  18. Low, K.H.: Industrial robotics: programming, simulation and applications. I-Tech (2007)

    Google Scholar 

  19. Martinelli, A., Scaramuzza, D., Siegwart, R.: Automatic self-calibration of a vision system during robot motion. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp. 43–48. IEEE (2006)

    Google Scholar 

  20. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  21. Nobre, F., Heckman, C., Sibley, G.: Multi-sensor slam with online self-calibration and change detection. In: International Symposium on Experimental Robotics (ISER) (2016)

    Google Scholar 

  22. Richardson, A., Strom, J., Olson, E.: Aprilcal: Assisted and repeatable camera calibration. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1814–1821. IEEE (2013)

    Google Scholar 

  23. Sheehan, M., Harrison, A., Newman, P.: Self-calibration for a 3d laser. Int. J. Robot. Res. 31(5), 675–687 (2012)

    Article  Google Scholar 

  24. Strasdat, H., Montiel, J., Davison, A.J.: Real-time monocular slam: why filter? In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 2657–2664. IEEE (2010)

    Google Scholar 

  25. Sturm, P.F., Maybank, S.J.: On plane-based camera calibration: a general algorithm, singularities, applications. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, vol. 1, pp. 432–437. IEEE (1999)

    Google Scholar 

  26. Zhang, Q., Pless, R.: Extrinsic calibration of a camera and laser range finder (improves camera calibration). In: Proceedings. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004. (IROS 2004), vol. 3, pp. 2301–2306. IEEE (2004)

    Google Scholar 

Download references

Acknowledgements

This work was supported by DARPA DSO “Ninja Car” award no. N65236-16–1–1000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoffer Heckman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nobre, F., Heckman, C. (2020). Reinforcement Learning for Assisted Visual-Inertial Robotic Calibration. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-28619-4_36

Download citation

Publish with us

Policies and ethics