Skip to main content

Computational Details of the QM/MM BOMD Simulations

  • Chapter
  • First Online:
Photoinduced Molecular Dynamics in Solution

Part of the book series: Springer Theses ((Springer Theses))

  • 410 Accesses

Abstract

The optimized geometry of PtPOP in its ground electronic state (S\(_0\)) was placed in a cubic simulation box with side length of 35 Å containing TIP4P [1] water molecules at a density of 1 g/cm\(^3\) pre-equilibrated in the NVT ensemble at 300 K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jorgensen WL (1981) Quantum and statistical mechanical studies of liquids. 10. transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. J Am Chem Soc 103:335–340

    Article  CAS  Google Scholar 

  2. Jensen KP, Jorgensen WL (2006) Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions. J Chem Theory Comput 2(6):1499–1509

    Article  CAS  PubMed  Google Scholar 

  3. Larsen AH, Vanin M, Mortensen JJ, Thygesen KS, Jacobsen KW (2009) Localized atomic basis set in the projector augmented wave method. Phys Rev B 80:195112

    Article  Google Scholar 

  4. Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) Uff, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035

    Article  CAS  Google Scholar 

  5. Andersen HC (1983) Rattle: a “velocity” version of the shake algorithm for molecular dynamics calculations. J Comput Phys 52:24

    Article  CAS  Google Scholar 

  6. Frenkel D, Smit B (2002) Understanding molecular simulation. Academic Press

    Google Scholar 

  7. Petersen J, Henriksen NE, Møller KB (2012) Validity of the Bersohn-Zewail model beyond justification. Chem Phys Lett 539–540:234–238

    Article  Google Scholar 

  8. Møller KB, Rossend R, Hynes JT (2004) Hydrogen bond dynamics in water and ultrafast infrared spectroscopy: a theoretical study. J Phys Chem A 108:1275–1289

    Article  Google Scholar 

  9. Ermoshin VA, Engel V (2001) Femtosecond pump-probe fluorescence signals from classical trajectories: comparison with wave-packet calculations. Eur Phys J D 15:413–422

    Article  CAS  Google Scholar 

  10. Li Z, Fang J-Y, Martens CC (1996) Simulation of ultrafast dynamics and pump-probe spectroscopy using classical trajectories. J Chem Phys 104(18):6919

    Article  CAS  Google Scholar 

  11. Jonas DM, Bradforth SE, Passino SA, Fleming GR (1995) Femtosecond wavepacket spectroscopy: influence of temperature, wavelength, and pulse duration. J Phys Chem 99(9):2594–2608

    Article  CAS  Google Scholar 

  12. van der Veen RM, Cannizzo A, van Mourik F, Vlček Jr A, Chergui M (2011) Vibrational relaxation and intersystem crossing of binuclear metal complexes in solution. J Am Chem Soc 113:305

    Google Scholar 

  13. Haldrup K, Levi G, Biasin E, Vester P, Laursen MG, Beyer F, Kjær KS, Brandt van Driel T, Harlang T, Dohn AO, Hartsock RJ, Nelson S, Glownia JM, Lemke HT, Christensen M, Gaffney KJ, Henriksen NE, Møller KB, Nielsen MM (2019) Ultrafast x-ray scattering measurements of coherent structural dynamics on the ground-state potential energy surface of a diplatinum molecule. Phys Rev Lett 122:063001

    Article  CAS  PubMed  Google Scholar 

  14. Biasin E, van Driel TB, Levi G, Laursen MG, Dohn AO, Moltke A, Vester P, Hansen FBK, Kjaer KS, Hartsock R, Christensen M, Gaffney KJ, Henriksen NE, Møller KB, Haldrup K, Nielsen MM (2018) Anisotropy enhanced X-ray scattering from solvated transition metal complexes. J Synchrotron Radiat 25(2):306–315

    Article  CAS  PubMed  Google Scholar 

  15. Stiegman AE, Rice SF, Gray HB, Miskowski VM (1987) Electronic spectroscopy of d\(^8\)-d\(^8\) diplatinum complexes. \(^1\)a\(_{2{\rm u}}\)(d\(\sigma ^*\rightarrow {\rm p} \sigma \)), \(^3\)e\(_{{\rm u}}\)(d\(_{xz}\),d\(_{yz}\rightarrow \)p\(\sigma \)), and \(^{3,1}\)b\(_{2{\rm u}}\)(d\(\sigma ^*\rightarrow \) d\(_{x^2-y^2}\)) excited states of pt\(_2\)(p\(_2\)o\(_5\)h\(_2\))\(_{4}^{4-}\). Inorg Chem 26:1112

    Google Scholar 

  16. Rice SF, Gray HB (1983) Electronic absorption and emission spectra of binuclear platinum(II) complexes. Characterization of the lowest singlet and triplet excited states of Pt\(_2\)(P\(_2\)O\(_5\)H\(_2\))\(_{4}^{4-}\). J Am Chem Soc 105:4571–4575

    Google Scholar 

  17. Van Kleef EH, Powis I (1999) Anisotropy in the preparation of symmetric top excited states. I. One-photon electric dipole excitation. Mol Phys 96(5):757–774

    Google Scholar 

  18. Fordyce WA, Brummer JG, Crosby GA (1981) Electronic spectroscopy of a diplatinum(II) octaphosphite complex. J Am Chem Soc 103(6):7061–7064

    Article  CAS  Google Scholar 

  19. Franck J, Dymond EG (1926) Elementary processes of photochemical reactions. Trans Faraday Soc 21:536–542

    Article  Google Scholar 

  20. Batista VS, Coker DF (1997) Nonadiabatic molecular dynamics simulation of ultrafast pump-probe experiments on I\(_2\) in solid rare gases. J Chem Phys 106:6923

    CAS  Google Scholar 

  21. Zadoyan R, Li Z, Martens CC, Apkarian VA (1994) The breaking and remaking of a bond: Caging of I2 in solid Kr. J Chem Phys 101(8):6648–6657

    Article  Google Scholar 

  22. Dohn AO, Jónsson EÖ, Kjær KS, van Driel TB, Nielsen MM, Jacobsen KW, Henriksen NE, Møller KB (2014) Direct dynamics studies of a binuclear metal complex in solution: the interplay between vibrational relaxation, coherence, and solvent effects. J Phys Chem Lett 5:2414–2418

    Article  CAS  Google Scholar 

  23. Winter N, Benjamin I (2004) Photodissociation of ICN at the liquid/vapor interface of water. J Chem Phys 121(5):2253–2263

    Article  CAS  PubMed  Google Scholar 

  24. Schinke R (1993) Photodissociation dynamics. Cambridge University Press

    Google Scholar 

  25. Ojamäe L, Tegenfeldt J, Lindgren J, Hermansson K (1992) Simulation of band widths in liquid water spectra. The breakdown of the frozen-field approximation. Chem Phys Lett 195(1):97–103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Levi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Levi, G. (2019). Computational Details of the QM/MM BOMD Simulations. In: Photoinduced Molecular Dynamics in Solution. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-28611-8_10

Download citation

Publish with us

Policies and ethics