Skip to main content

Role of Immunoregulatory Cytokine IL-15 in the Endometrium

  • Chapter
  • First Online:
Endometrial Gene Expression

Abstract

Within the endometrial environment, which is tightly controlled by ovarian hormones, cells of the immune system play an important role in the regulation of processes that must happen in preparation for embryo implantation and placental growth. Immune cells are numerous in the endometrium; they include lymphocytes, macrophages, dendritic cells, and neutrophils. NK cells represent the most abundant and dynamic population of immune cells in the endometrium, as their number gradually increases with the progression of the menstrual cycle and remains exclusively high in decidualized stroma when pregnancy occurs. A key cytokine responsible for NK cell proliferation, survival, and functional activity is IL-15. The endometrium is among the tissues with a high IL-15 mRNA expression. The expression of IL-15 in the endometrium is low in the proliferative phase and peaks during the secretory phase. Main producers of IL-15 in the endometrium are stromal cells, which upregulate IL-15 production upon the influence of progesterone and differentiation into decidual cells. Endometrial stromal cells also express IL-15Rα; this allows them to trans-present the IL-15 to the neighboring NK cells. Prolonged stimulation of NK cells by the membrane-bound IL15/IL15Rα complex is known to mediate a metabolic reprogramming in NK cells and increase their effector functions such as degranulation. This feature of NK cells is important for clearance of senescent endometrial cells which drive a transient inflammatory reaction specific for receptive endometrium. Overexpression of IL-15 could have a detrimental effect on pregnancy development due to excessive activation of uterine NK cells. Thus, IL-15 production in endometrium has to be tightly regulated to achieve an optimal balance in tuning uterine NK cell activity toward supporting embryo implantation and placental development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grabstein KH, Eisenman J, Shanebeck K, Rauch C, Srinivasan S, Fung V, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science. 1994;264(5161):965–8.

    Article  CAS  PubMed  Google Scholar 

  2. Fehniger TA, Caligiuri MA. Interleukin 15: biology and relevance to human disease. Blood. 2001;97(1):14–32.

    Article  CAS  PubMed  Google Scholar 

  3. Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med. 2000;191(5):771–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marcais A, Cherfils-Vicini J, Viant C, Degouve S, Viel S, Fenis A, et al. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat Immunol. 2014;15(8):749–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Donnelly RP, Loftus RM, Keating SE, Liou KT, Biron CA, Gardiner CM, et al. mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function. J Immunol. 2014;193(9):4477–84.

    Article  CAS  PubMed  Google Scholar 

  6. Anderson DM, Kumaki S, Ahdieh M, Bertles J, Tometsko M, Loomis A, et al. Functional characterization of the human interleukin-15 receptor alpha chain and close linkage of IL15RA and IL2RA genes. J Biol Chem. 1995;270(50):29862–9.

    Article  CAS  PubMed  Google Scholar 

  7. Leonard WJ, Depper JM, Crabtree GR, Rudikoff S, Pumphrey J, Robb RJ, et al. Molecular cloning and expression of cDNAs for the human interleukin-2 receptor. Nature. 1984;311(5987):626–31.

    Article  CAS  PubMed  Google Scholar 

  8. Dubois S, Mariner J, Waldmann TA, Tagaya Y. IL-15Ralpha recycles and presents IL-15 in trans to neighboring cells. Immunity. 2002;17(5):537–47.

    Article  CAS  PubMed  Google Scholar 

  9. Schluns KS, Stoklasek T, Lefrancois L. The roles of interleukin-15 receptor alpha: trans-presentation, receptor component, or both? Int J Biochem Cell Biol. 2005;37(8):1567–71.

    Article  CAS  PubMed  Google Scholar 

  10. Perdreau H, Mortier E, Bouchaud G, Sole V, Boublik Y, Plet A, et al. Different dynamics of IL-15R activation following IL-15 cis- or trans-presentation. Eur Cytokine Netw. 2010;21(4):297–307.

    CAS  PubMed  Google Scholar 

  11. Zanoni I, Spreafico R, Bodio C, Di Gioia M, Cigni C, Broggi A, et al. IL-15 cis presentation is required for optimal NK cell activation in lipopolysaccharide-mediated inflammatory conditions. Cell Rep. 2013;4(6):1235–49.

    Article  CAS  PubMed  Google Scholar 

  12. Koka R, Burkett PR, Chien M, Chai S, Chan F, Lodolce JP, et al. Interleukin (IL)-15R[alpha]-deficient natural killer cells survive in normal but not IL-15R[alpha]-deficient mice. J Exp Med. 2003;197(8):977–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo Y, Luan L, Patil NK, Sherwood ER. Immunobiology of the IL-15/IL-15Ralpha complex as an antitumor and antiviral agent. Cytokine Growth Factor Rev. 2017;38:10–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Robinson TO, Schluns KS. The potential and promise of IL-15 in immuno-oncogenic therapies. Immunol Lett. 2017;190:159–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cui G, Hara T, Simmons S, Wagatsuma K, Abe A, Miyachi H, et al. Characterization of the IL-15 niche in primary and secondary lymphoid organs in vivo. Proc Natl Acad Sci U S A. 2014;111(5):1915–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Briard D, Brouty-Boye D, Azzarone B, Jasmin C. Fibroblasts from human spleen regulate NK cell differentiation from blood CD34(+) progenitors via cell surface IL-15. J Immunol. 2002;168(9):4326–32.

    Article  CAS  PubMed  Google Scholar 

  17. Kinoshita N, Hiroi T, Ohta N, Fukuyama S, Park EJ, Kiyono H. Autocrine IL-15 mediates intestinal epithelial cell death via the activation of neighboring intraepithelial NK cells. J Immunol. 2002;169(11):6187–92.

    Article  CAS  PubMed  Google Scholar 

  18. Miranda-Carus ME, Balsa A, Benito-Miguel M, Perez de Ayala C, Martin-Mola E. IL-15 and the initiation of cell contact-dependent synovial fibroblast-T lymphocyte cross-talk in rheumatoid arthritis: effect of methotrexate. J Immunol. 2004;173(2):1463–76.

    Article  CAS  PubMed  Google Scholar 

  19. Giron-Michel J, Azzi S, Khawam K, Mortier E, Caignard A, Devocelle A, et al. Interleukin-15 plays a central role in human kidney physiology and cancer through the gammac signaling pathway. PLoS One. 2012;7(2):e31624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sandau MM, Schluns KS, Lefrancois L, Jameson SC. Cutting edge: transpresentation of IL-15 by bone marrow-derived cells necessitates expression of IL-15 and IL-15R alpha by the same cells. J Immunol. 2004;173(11):6537–41.

    Article  CAS  PubMed  Google Scholar 

  21. Kitaya K, Yasuda J, Yagi I, Tada Y, Fushiki S, Honjo H. IL-15 expression at human endometrium and decidua. Biol Reprod. 2000;63(3):683–7.

    Article  CAS  PubMed  Google Scholar 

  22. Okada S, Okada H, Sanezumi M, Nakajima T, Yasuda K, Kanzaki H. Expression of interleukin-15 in human endometrium and decidua. Mol Hum Reprod. 2000;6(1):75–80.

    Article  CAS  PubMed  Google Scholar 

  23. Wilkens J, Male V, Ghazal P, Forster T, Gibson DA, Williams AR, et al. Uterine NK cells regulate endometrial bleeding in women and are suppressed by the progesterone receptor modulator asoprisnil. J Immunol. 2013;191(5):2226–35.

    Article  CAS  PubMed  Google Scholar 

  24. Chegini N, Ma C, Roberts M, Williams RS, Ripps BA. Differential expression of interleukins (IL) IL-13 and IL-15 throughout the menstrual cycle in endometrium of normal fertile women and women with recurrent spontaneous abortion. J Reprod Immunol. 2002;56(1–2):93–110.

    Article  CAS  PubMed  Google Scholar 

  25. Brighton PJ, Maruyama Y, Fishwick K, Vrljicak P, Tewary S, Fujihara R, et al. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. eLife. 2017;6.

    Google Scholar 

  26. Kitaya K, Yasuo T. Regulatory role of membrane-bound form interleukin-15 on human uterine microvascular endothelial cells in circulating CD16(−) natural killer cell extravasation into human endometrium. Biol Reprod. 2013;89(3):70.

    Article  PubMed  CAS  Google Scholar 

  27. Dunn CL, Critchley HO, Kelly RW. IL-15 regulation in human endometrial stromal cells. J Clin Endocrinol Metab. 2002;87(4):1898–901.

    Article  CAS  PubMed  Google Scholar 

  28. Okada H, Nakajima T, Yasuda K, Kanzaki H. Interleukin-1 inhibits interleukin-15 production by progesterone during in vitro decidualization in human. J Reprod Immunol. 2004;61(1):3–12.

    Article  CAS  PubMed  Google Scholar 

  29. Verma S, Hiby SE, Loke YW, King A. Human decidual natural killer cells express the receptor for and respond to the cytokine interleukin 15. Biol Reprod. 2000;62(4):959–68.

    Article  CAS  PubMed  Google Scholar 

  30. Franchi A, Zaret J, Zhang X, Bocca S, Oehninger S. Expression of immunomodulatory genes, their protein products and specific ligands/receptors during the window of implantation in the human endometrium. Mol Hum Reprod. 2008;14(7):413–21.

    Article  CAS  PubMed  Google Scholar 

  31. Toth B, Haufe T, Scholz C, Kuhn C, Friese K, Karamouti M, et al. Placental interleukin-15 expression in recurrent miscarriage. Am J Reprod Immunol. 2010;64(6):402–10.

    Article  CAS  PubMed  Google Scholar 

  32. Ledee N, Chaouat G, Serazin V, Lombroso R, Dubanchet S, Oger P, et al. Endometrial vascularity by three-dimensional power Doppler ultrasound and cytokines: a complementary approach to assess uterine receptivity. J Reprod Immunol. 2008;77(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  33. Logan PC, Yango P, Tran ND. Endometrial stromal and epithelial cells exhibit unique aberrant molecular defects in patients with endometriosis. Reprod Sci. 2018;25(1):140–59.

    Article  CAS  PubMed  Google Scholar 

  34. Yu JJ, Sun HT, Zhang ZF, Shi RX, Liu LB, Shang WQ, et al. IL15 promotes growth and invasion of endometrial stromal cells and inhibits killing activity of NK cells in endometriosis. Reproduction. 2016;152(2):151–60.

    Article  CAS  PubMed  Google Scholar 

  35. Arici A, Matalliotakis I, Goumenou A, Koumantakis G, Vassiliadis S, Selam B, et al. Increased levels of interleukin-15 in the peritoneal fluid of women with endometriosis: inverse correlation with stage and depth of invasion. Hum Reprod. 2003;18(2):429–32.

    Article  CAS  PubMed  Google Scholar 

  36. Mah AY, Cooper MA. Metabolic regulation of natural killer cell IFN-gamma production. Crit Rev Immunol. 2016;36(2):131–47.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Keating SE, Zaiatz-Bittencourt V, Loftus RM, Keane C, Brennan K, Finlay DK, et al. Metabolic reprogramming supports IFN-gamma production by CD56bright NK cells. J Immunol. 2016;196(6):2552–60.

    Article  CAS  PubMed  Google Scholar 

  38. Bulmer JN, Hollings D, Ritson A. Immunocytochemical evidence that endometrial stromal granulocytes are granulated lymphocytes. J Pathol. 1987;153(3):281–8.

    Article  CAS  PubMed  Google Scholar 

  39. Childs BG, Baker DJ, Kirkland JL, Campisi J, van Deursen JM. Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep. 2014;15(11):1139–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van Deursen JM. The role of senescent cells in ageing. Nature. 2014;509(7501):439–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Griffith OW, Chavan AR, Protopapas S, Maziarz J, Romero R, Wagner GP. Embryo implantation evolved from an ancestral inflammatory attachment reaction. Proc Natl Acad Sci U S A. 2017;114(32):E6566–E75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vilella F, Ramirez L, Berlanga O, Martinez S, Alama P, Meseguer M, et al. PGE2 and PGF2alpha concentrations in human endometrial fluid as biomarkers for embryonic implantation. J Clin Endocrinol Metab. 2013;98(10):4123–32.

    Article  CAS  PubMed  Google Scholar 

  43. Ledee N, Petitbarat M, Chevrier L, Vitoux D, Vezmar K, Rahmati M, et al. The uterine immune profile may help women with repeated unexplained embryo implantation failure after in vitro fertilization. Am J Reprod Immunol. 2016;75(3):388–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Dambaeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dambaeva, S., Beaman, K.D. (2020). Role of Immunoregulatory Cytokine IL-15 in the Endometrium. In: Kwak-Kim, J. (eds) Endometrial Gene Expression. Springer, Cham. https://doi.org/10.1007/978-3-030-28584-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28584-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28583-8

  • Online ISBN: 978-3-030-28584-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics