Skip to main content

Molecular Biology Techniques for Endometrial Gene Expression: Recent Technological Advances

  • Chapter
  • First Online:
Book cover Endometrial Gene Expression
  • 414 Accesses

Abstract

The characterization of the endometrium is of great difficulty because of its complicated structure and dynamic change along with the menstrual cycle. Huge labor and high cost are required to get the multidimensional information of endometrium, which limits the comprehensive characterization of the endometrium. The molecular biology advances now allow the high-throughput quantification of the gene expression of the endometrium. In this review, the commonly used techniques for transcriptome profiling are systematically introduced. Furthermore, their applications in the global view of endometrial gene expression under physiological or pathological conditions are summarized. These studies have deepened our understanding of the structure and the periodic change of endometrium, which will guide the clinical activities in the diagnosis and the therapy for endometrial disorders, and even endometrial cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guyton AC, Hall JE. Chapter 81 Female physiology before pregnancy and female hormones. In: Textbook of medical physiology. 11th ed. W.B. Saunder Co.; 2006. p. 1018ff.

    Google Scholar 

  2. Strassmann BI. The evolution of endometrial cycles and menstruation. Q Rev Biol. 1996;71(2):181–220.

    Article  CAS  PubMed  Google Scholar 

  3. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270(5235):467–70.

    Article  CAS  PubMed  Google Scholar 

  4. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nawy T. Single-cell sequencing. Nat Methods. 2014;11(1):18.

    Article  CAS  PubMed  Google Scholar 

  6. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309(5740):1559–63.

    Article  CAS  PubMed  Google Scholar 

  8. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316(5830):1484–8.

    Article  CAS  PubMed  Google Scholar 

  9. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hesse M, Arenz C. MicroRNA maturation and human disease. Methods Mol Biol. 2014;1095:11–25.

    Article  CAS  PubMed  Google Scholar 

  11. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9.

    Article  CAS  PubMed  Google Scholar 

  12. Salzman J. Circular RNA expression: its potential regulation and function. Trends Genet. 2016;32(5):309–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA. 2017;8(1):e1364.

    Article  CAS  Google Scholar 

  14. Szabo L, Morey R, Palpant NJ, Wang PL, Afari N, Jiang C, et al. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol. 2015;16:126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Res. 2013;73(18):5609–12.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao ZJ, Shen J. Circular RNA participates in the carcinogenesis and the malignant behavior of cancer. RNA Biol. 2017;14(5):514–21.

    Article  PubMed  Google Scholar 

  17. Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther. 2018;187:31–44.

    Article  CAS  PubMed  Google Scholar 

  18. Holdt LM, Kohlmaier A, Teupser D. Molecular functions and specific roles of circRNAs in the cardiovascular system. Noncoding RNA Res. 2018;3(2):75–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science. 2009;324(5924):218–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McFadden EJ, Hargrove AE. Biochemical methods to investigate lncRNA and the influence of lncRNA:protein complexes on chromatin. Biochemistry. 2016;55(11):1615–30.

    Article  CAS  PubMed  Google Scholar 

  21. Ponnampalam AP, Weston GC, Trajstman AC, Susil B, Rogers PA. Molecular classification of human endometrial cycle stages by transcriptional profiling. Mol Hum Reprod. 2004;10(12):879–93.

    Article  CAS  PubMed  Google Scholar 

  22. Talbi S, Hamilton AE, Vo KC, Tulac S, Overgaard MT, Dosiou C, et al. Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. Endocrinology. 2006;147(3):1097–121.

    Article  CAS  PubMed  Google Scholar 

  23. Sigurgeirsson B, Amark H, Jemt A, Ujvari D, Westgren M, Lundeberg J, et al. Comprehensive RNA sequencing of healthy human endometrium at two time points of the menstrual cycle. Biol Reprod. 2017;96(1):24–33.

    PubMed  Google Scholar 

  24. Krjutskov K, Katayama S, Saare M, Vera-Rodriguez M, Lubenets D, Samuel K, et al. Single-cell transcriptome analysis of endometrial tissue. Hum Reprod. 2016;31(4):844–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu B, Li Y, Liu Y, Jin K, Zhao K, An C, et al. Cell atlas of human uterus. bioRxiv. 2018.

    Google Scholar 

  26. Wang W, Vilella F, Moreno I, Pan W, Simon C, Quake SR. Single cell RNAseq provides a molecular and cellular cartography of changes to the human endometrium through the menstrual cycle. bioRxiv. 2018.

    Google Scholar 

  27. Li Z, Bai P, Peng D, Wang H, Guo Y, Jiang Y, et al. Screening and confirmation of microRNA markers for distinguishing between menstrual and peripheral blood. Forensic Sci Int Genet. 2017;30:24–33.

    Article  CAS  PubMed  Google Scholar 

  28. Rekker K, Saare M, Roost AM, Salumets A, Peters M. Circulating microRNA profile throughout the menstrual cycle. PLoS One. 2013;8(11):e81166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kennedy S, Bergqvist A, Chapron C, D'Hooghe T, Dunselman G, Greb R, et al. ESHRE guideline for the diagnosis and treatment of endometriosis. Hum Reprod. 2005;20(10):2698–704.

    Article  PubMed  Google Scholar 

  30. Sourial S, Tempest N, Hapangama DK. Theories on the pathogenesis of endometriosis. Int J Reprod Med. 2014;2014:179515.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Colon-Caraballo M, Garcia M, Mendoza A, Flores I. Human endometriosis tissue microarray reveals site-specific expression of estrogen receptors, progesterone receptor, and Ki67. Appl Immunohistochem Mol Morphol. 2019;27(7):491–500.

    Article  CAS  Google Scholar 

  32. Ping S, Ma C, Liu P, Yang L, Yang X, Wu Q, et al. Molecular mechanisms underlying endometriosis pathogenesis revealed by bioinformatics analysis of microarray data. Arch Gynecol Obstet. 2016;293(4):797–804.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao L, Gu C, Ye M, Zhang Z, Han W, Fan W, et al. Identification of global transcriptome abnormalities and potential biomarkers in eutopic endometria of women with endometriosis: a preliminary study. Biomed Rep. 2017;6(6):654–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gilabert-Estelles J, Braza-Boils A, Ramon LA, Zorio E, Medina P, Espana F, et al. Role of microRNAs in gynecological pathology. Curr Med Chem. 2012;19(15):2406–13.

    Article  CAS  PubMed  Google Scholar 

  35. Hawkins SM, Creighton CJ, Han DY, Zariff A, Anderson ML, Gunaratne PH, et al. Functional microRNA involved in endometriosis. Mol Endocrinol. 2011;25(5):821–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ohlsson Teague EM, Van der Hoek KH, Van der Hoek MB, Perry N, Wagaarachchi P, Robertson SA, et al. MicroRNA-regulated pathways associated with endometriosis. Mol Endocrinol. 2009;23(2):265–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Braza-Boils A, Mari-Alexandre J, Gilabert J, Sanchez-Izquierdo D, Espana F, Estelles A, et al. MicroRNA expression profile in endometriosis: its relation to angiogenesis and fibrinolytic factors. Hum Reprod. 2014;29(5):978–88.

    Article  CAS  PubMed  Google Scholar 

  38. Xu XX, Jia SZ, Dai Y, Zhang JJ, Li XY, Shi JH, et al. Identification of circular RNAs as a novel biomarker for ovarian endometriosis. Chin Med J. 2018;131(5):559–66.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Koot YE, van Hooff SR, Boomsma CM, van Leenen D, Groot Koerkamp MJ, Goddijn M, et al. An endometrial gene expression signature accurately predicts recurrent implantation failure after IVF. Sci Rep. 2016;6:19411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tapia-Pizarro A, Figueroa P, Brito J, Marin JC, Munroe DJ, Croxatto HB. Endometrial gene expression reveals compromised progesterone signaling in women refractory to embryo implantation. Reprod Biol Endocrinol. 2014;12:92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Huang J, Qin H, Yang Y, Chen X, Zhang J, Laird S, et al. A comparison of transcriptomic profiles in endometrium during window of implantation between women with unexplained recurrent implantation failure and recurrent miscarriage. Reproduction. 2017;153(6):749–58.

    Article  CAS  PubMed  Google Scholar 

  42. Hu S, Yao G, Wang Y, Xu H, Ji X, He Y, et al. Transcriptomic changes during the pre-receptive to receptive transition in human endometrium detected by RNA-Seq. J Clin Endocrinol Metab. 2014;99(12):E2744–53.

    Article  CAS  PubMed  Google Scholar 

  43. Revel A, Achache H, Stevens J, Smith Y, Reich R. MicroRNAs are associated with human embryo implantation defects. Hum Reprod. 2011;26(10):2830–40.

    Article  CAS  PubMed  Google Scholar 

  44. Arend RC, Jones BA, Martinez A, Goodfellow P. Endometrial cancer: molecular markers and management of advanced stage disease. Gynecol Oncol. 2018;150(3):569–80.

    Article  CAS  PubMed  Google Scholar 

  45. Risinger JI, Maxwell GL, Chandramouli GV, Jazaeri A, Aprelikova O, Patterson T, et al. Microarray analysis reveals distinct gene expression profiles among different histologic types of endometrial cancer. Cancer Res. 2003;63(1):6–11.

    CAS  PubMed  Google Scholar 

  46. Risinger JI, Allard J, Chandran U, Day R, Chandramouli GV, Miller C, et al. Gene expression analysis of early stage endometrial cancers reveals unique transcripts associated with grade and histology but not depth of invasion. Front Oncol. 2013;3:139.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Maxwell GL, Chandramouli GV, Dainty L, Litzi TJ, Berchuck A, Barrett JC, et al. Microarray analysis of endometrial carcinomas and mixed mullerian tumors reveals distinct gene expression profiles associated with different histologic types of uterine cancer. Clin Cancer Res. 2005;11(11):4056–66.

    Article  CAS  PubMed  Google Scholar 

  48. O'Mara TA, Zhao M, Spurdle AB. Meta-analysis of gene expression studies in endometrial cancer identifies gene expression profiles associated with aggressive disease and patient outcome. Sci Rep. 2016;6:36677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shi Z, Li C, Tarwater L, Li J, Li Y, Kaliney W, et al. RNA-seq reveals the overexpression of IGSF9 in endometrial Cancer. J Oncol. 2018;2018:2439527.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lemetre C, Vieites B, Ng CK, Piscuoglio S, Schultheis AM, Marchio C, et al. RNASeq analysis reveals biological processes governing the clinical behaviour of endometrioid and serous endometrial cancers. Eur J Cancer. 2016;64:149–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yanokura M, Banno K, Iida M, Irie H, Umene K, Masuda K, et al. MicroRNAS in endometrial cancer: recent advances and potential clinical applications. EXCLI J. 2015;14:190–8.

    PubMed  PubMed Central  Google Scholar 

  52. Chen BJ, Byrne FL, Takenaka K, Modesitt SC, Olzomer EM, Mills JD, et al. Transcriptome landscape of long intergenic non-coding RNAs in endometrial cancer. Gynecol Oncol. 2017;147(3):654–62.

    Article  CAS  PubMed  Google Scholar 

  53. Hellweg R, Mooneyham A, Chang Z, Shetty M, Emmings E, Iizuka Y, et al. RNA sequencing of carboplatin- and paclitaxel-resistant endometrial cancer cells reveals new stratification markers and molecular targets for cancer treatment. Horm Cancer. 2018;9(5):326–37.

    Article  CAS  PubMed  Google Scholar 

  54. Jayaraman M, Radhakrishnan R, Mathews CA, Yan M, Husain S, Moxley KM, et al. Identification of novel diagnostic and prognostic miRNA signatures in endometrial cancer. Genes Cancer. 2017;8(5–6):566–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hashimoto S, Tabuchi Y, Yurino H, Hirohashi Y, Deshimaru S, Asano T, et al. Comprehensive single-cell transcriptome analysis reveals heterogeneity in endometrioid adenocarcinoma tissues. Sci Rep. 2017;7(1):14225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer--a survey. Biochim Biophys Acta. 2007;1775(1):181–232.

    CAS  PubMed  Google Scholar 

  57. Crescitelli R, Lasser C, Szabo TG, Kittel A, Eldh M, Dianzani I, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013;2.

    Article  CAS  Google Scholar 

  58. Zaporozhchenko IA, Ponomaryova AA, Rykova EY, Laktionov PP. The potential of circulating cell-free RNA as a cancer biomarker: challenges and opportunities. Expert Rev Mol Diagn. 2018;18(2):133–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijia Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ni, K., Ma, L. (2020). Molecular Biology Techniques for Endometrial Gene Expression: Recent Technological Advances. In: Kwak-Kim, J. (eds) Endometrial Gene Expression. Springer, Cham. https://doi.org/10.1007/978-3-030-28584-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28584-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28583-8

  • Online ISBN: 978-3-030-28584-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics