Skip to main content

Optimal Planning of Electric Power Systems

  • Chapter
  • First Online:
Optimization in Large Scale Problems

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 152))

Abstract

Electric power systems provide an essential service to any modern society. They are inherently large- scale dynamic systems with a high degree of spatio-temporal complexity. Their reliability and security of supply are central considerations in any regional or global energy-related policy. Methods for power systems planning have typically ensured key operational reliability aspects under normal operating conditions and in response to anticipated demand variability, uncertainty and supply disruptions, e.g. due to errors in load forecasts and to unexpected generation units outages. Solutions have been commonly built on capacity adequacy and operating reserves requirements, among others. However, recent objectives for environmental sustainability and the threats of climate change are challenging the reliability requirements of power systems in various new ways and necessitate adapted planning methods.

The present chapter describes some of the issues related to the development of the integrated techno-economic modeling and robust optimization framework that is needed today for power systems planning adapted. Such planning framework should cope with the new context by addressing the challenges associated with the sustainability targets of future power systems, and most notably ensuring operational flexibility against the variability of renewable energy sources, ensuring resilience against extreme weather events and ensuring robustness against the uncertainties inherent in both the electric power supply and system load.

This chapter presents the context by summarizing the main sustainability drivers for the current (and future) power systems planning and operation. These well-known sustainability targets have become a worldwide imperative in all sectors of economic activity, and are embedded within almost any regulatory or policy dialogue. We will, then, review the particular transformation undergoing in the electric power sector planning, not only driven by the sustainability goals, but also by the more general technological and/or regulatory advancements. The main power systems planning related challenges are detailed, along with a thorough review of previous research works and research gaps. Then, key research questions and ensuing objectives are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Allen M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., Church, J.A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N.K., et al.: IPCC fifth assessment synthesis report-climate change 2014 synthesis report. In: (2014)

    Google Scholar 

  2. IEA.: Global energy and CO2 status report. All Rights Reserved. (2018)

    Google Scholar 

  3. Cronin, J., Anandarajah, G., Dessens, O.: Climate change impacts on the energy system: a review of trends and gaps. Clim. Chang. 151(2), 79–93 (2018)

    Article  Google Scholar 

  4. IEA.: Making the Energy Sector more Resilient to Climate Change. Allrights Reserved. (2015)

    Google Scholar 

  5. Cambridge Institute for Sustainability Leadership: Climate Change: Implications for the Energy Sector. World Energy Council (WEC), the Cambridge Institute for Sustainability Leadership (CISL) and the Cambridge Judge Business School (CJBS (2014)

    Google Scholar 

  6. Hemmati, R., Hooshmand, R.-A., Khodabakhshian, A.: Comprehensive review of generation and transmission expansion planning. IET Gener. Transm. Distrib. 7(9), 955–964 (2013)

    Article  Google Scholar 

  7. Masse, P., Gibrat, R.: Application of linear programming to investments in the electric power industry. Manag. Sci. 3(2), 149–166 (1957)

    Article  Google Scholar 

  8. Bakirtzis, G.A., Biskas, P.N., Chatziathanasiou, V.: Generation expansion planning by MILP considering mid-term scheduling decisions. Electr. Power Syst. Res. 86, 98–112 (2012)

    Article  Google Scholar 

  9. Koltsaklis, N.E., Georgiadis, M.C.: A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints. Appl. Energy. 158, 310–331 (2015)

    Article  Google Scholar 

  10. Hemmati, R., Hooshmand, R.-A., Khodabakhshian, A.: Reliability constrained generation expansion planning with consideration of wind farms uncertainties in deregulated electricity market. Energy Convers. Manag. 76, 517–526 (2013)

    Article  Google Scholar 

  11. Dehghan, S., Amjady, N., Conejo, A.J.: Reliability-constrained robust power system expansion planning. IEEE Trans. Power Syst. 31(3), 2383–2392 (2016). 89 90 Bibliography

    Article  Google Scholar 

  12. Min, X., Jinfu, C., Zhong, D.X.: Generator maintenance scheduling in the generation expansion planning of interconnected power system. Transm. Distrib. Conf. Exhib. 2002: Asia Pacific. IEEE/PES. 3. IEEE., 1601–1605 (2002)

    Google Scholar 

  13. Pereira, A.J.C., Saraiva, J.T.: A decision support system for generation expansion planning in competitive electricity markets. Electr. Power Syst. Res. 80(7), 778–787 (2010)

    Article  Google Scholar 

  14. Pereira, A.J.C., Saraiva, J.T.: Generation expansion planning (GEP)–A long-term approach using system dynamics and genetic algorithms (GAs). Energy. 36(8), 5180–5199 (2011)

    Article  Google Scholar 

  15. Pereira, A.J.C., Saraiva, J.T.: A long term generation expansion planning model using system dynamics–case study using data from the Portuguese/Spanish generation system. Electr. Power Syst. Res. 97, 41–50 (2013)

    Article  Google Scholar 

  16. Sirikum, J., Techanitisawad, A., Kachitvichyanukul, V.: A new efficient GA-benders’ decomposition method: for power generation expansion planning with emission controls. IEEE Trans. Power Syst. 22(3), 1092–1100 (2007)

    Article  Google Scholar 

  17. Lu, Z., Qi, J., Wen, B., Li, X.: A dynamic model for generation expansion planning based on conditional value-at-risk theory under low-carbon economy. Electr. Power Syst. Res. 141, 363–371 (2016)

    Article  Google Scholar 

  18. Aghaei, J., MA Akbari, A., Roosta, M.G., Niknam, T.: Integrated renewable–conventional generation expansion planning using multi-objective framework. IET Gener. Transm. Distrib. 6(8), 773–784 (2012)

    Article  Google Scholar 

  19. Zhan, Y., Zheng, Q.P., Wang, J., Pinson, P.: Generation expansion planning with large amounts of wind power via decision-dependent stochastic programming. IEEE Trans. Power Syst. 32(4), 3015–3026 (2016)

    Article  Google Scholar 

  20. Rajesh, K., Bhuvanesh, A., Kannan, S., Thangaraj, C.: Least cost generation expansion planning with solar power plant using differential evolution algorithm. Renew. Energy. 85, 677–686 (2016)

    Article  Google Scholar 

  21. Rajesh, K., Kannan, S., Thangaraj, C.: Least cost generation expansion planning with wind power plant incorporating emission using differential evolution algorithm. Int. J. Electr. Power Energy Syst. 80, 275–286 (2016)

    Article  Google Scholar 

  22. Gil, E., Aravena, I., Cárdenas, R.: Generation capacity expansion planning under hydro uncertainty using stochastic mixed integer programming and scenario reduction. IEEE Trans. Power Syst. 30(4), 1838–1847 (2015)

    Article  Google Scholar 

  23. Tekiner-Mogulkoc, H., Coit, D.W., Felder, F.A.: Mean-risk stochastic electricity generation expansion planning problems with demand uncertainties considering conditional-value-at-risk and maximum regret as risk measures. Int. J. Electr. Power Energy Syst. 73, 309–317 (2015)

    Article  Google Scholar 

  24. Park, H., Baldick, R.: Stochastic generation capacity expansion planning reducing greenhouse gas emissions. IEEE Trans. Power Syst. 30(2), 1026–1034 (2015)

    Article  Google Scholar 

  25. Li, S., Coit, D.W., Felder, F.: Stochastic optimization for electric power generation expansion planning with discrete climate change scenarios. In: Electr. Power Syst. Res., vol. 140, pp. 401–412 (2016)

    Google Scholar 

  26. Ghaderi, A., Moghaddam, M.P., Sheikh-El-Eslami, M.K.: Energy efficiency resource modeling in generation expansion planning. Energy. 68, 529–537 (2014)

    Article  Google Scholar 

  27. Satchwell, A., Hledik, R.: Analytical frameworks to incorporate demand response in long-term resource planning. Util. Policy. 28, 73–81 (2014)

    Article  Google Scholar 

  28. Tekiner-Mogulkoc, H., Coit, D.W., Felder, F.A.: Electric power system generation expansion plans considering the impact of smart grid technologies. Int. J. Electr. Power Energy Syst. 42(1), 229–239 (2012)

    Article  Google Scholar 

  29. Careri, F., Genesi, C., Marannino, P., Montagna, M., Rossi, S., Siviero, I.: Generation expansion planning in the age of green economy. IEEE Trans. Power Syst. 26(4), 2214–2223 (2011)

    Article  Google Scholar 

  30. Kagiannas, A.G., Askounis, D.T., Psarras, J.: Power generation planning: a survey from monopoly to competition. Int. J. Electr. Power Energy Syst. 26(6), 413–421 (2004)

    Article  Google Scholar 

  31. Sadeghi, H., Rashidinejad, M., Abdollahi, A.: A comprehensive sequential review study through the generation expansion planning. Renew. Sust. Energ. Rev. 67, 1369–1394 (2017)

    Article  Google Scholar 

  32. Kabouris, J., Kanellos, F.D.: Impacts of large-scale wind penetration on designing and operation of electric power systems. IEEE Trans. Sustain. Energy. 1(2), 107–114 (2010)

    Article  Google Scholar 

  33. Ummels, B.C., Gibescu, M., Pelgrum, E., Kling, W.L., Brand, A.J.: Impacts of wind power on thermal generation unit commitment and dispatch. IEEE Trans. Energy Convers. 22(1), 44–51 (2007)

    Article  Google Scholar 

  34. Charles Smith, J., Milligan, M.R., DeMeo, E.A., Parsons, B.: Utility wind integration and operating impact state of the art. IEEE Trans. Power Syst. 22(3), 900–908 (2007)

    Article  Google Scholar 

  35. Huber, M., Dimkova, D., Hamacher, T.: Integration of wind and solar power in Europe: assessment of flexibility requirements. Energy. 69, 236–246 (2014)

    Article  Google Scholar 

  36. Tabone, M.D., Goebel, C., Callaway, D.S.: The effect of PV siting on power system flexibility needs. Sol. Energy. 139, 776–786 (2016)

    Article  Google Scholar 

  37. Morales-España, G., Latorre, J.M., Ramos, A.: Tight and compact MILP formulation for the thermal unit commitment problem. IEEE Trans. Power Syst. 28(4), 4897–4908 (2013)

    Article  Google Scholar 

  38. Padhy, N.P.: Unit commitment-a bibliographical survey. IEEE Trans. Power Syst. 19(2), 1196–1205 (2004)

    Article  Google Scholar 

  39. Tuohy, A., Meibom, P., Denny, E., O’Malley, M.: Unit commitment for systems with significant wind penetration. IEEE Trans. Power Syst. 24(2), 592–601 (2009)

    Article  Google Scholar 

  40. Cheng, R., Xu, Z., Liu, P., Wang, Z., Li, Z., Jones, I.: A multi-region optimization planning model for China’s power sector. Appl. Energy. 137, 413–426 (2015)

    Article  Google Scholar 

  41. Koltsaklis, N.E., Dagoumas, A.S., Kopanos, G.M., Pistikopoulos, E.N., Georgiadis, M.C.: A spatial multi-period long-term energy planning model: a case study of the Greek power system. Appl. Energy. 115, 456–482 (2014)

    Article  Google Scholar 

  42. Barteczko-Hibbert, C., Bonis, I., Binns, M., Theodoropoulos, C., Azapagic, A.: A multi-period mixed-integer linear optimisation of future electricity supply considering life cycle costs and environmental impacts. Appl. Energy. 133, 317–334 (2014)

    Article  Google Scholar 

  43. Kirschen, D.S., Ma, J., Silva, V., Belhomme, R.: Optimizing the flexibility of a portfolio of generating plants to deal with wind generation. In: Power and Energy Society General Meeting, 2011 IEEE. IEEE, pp. 1–7 (2011)

    Google Scholar 

  44. Flores-Quiroz, A., Palma-Behnke, R., Zakeri, G., Moreno, R.: A column generation approach for solving generation expansion planning problems with high renewable energy penetration. Electr. Pow. Syst. Res. 136, 232–241 (2016)

    Article  Google Scholar 

  45. Deane, J.P., Chiodi, A., Gargiulo, M., GallachÓir, B.P.Ó.: Soft-linking of a power systems model to an energy systems model. Energy. 42(1), 303–312 (2012)

    Article  Google Scholar 

  46. Peerapat Vithayasrichareon, T. Lozanov, J.R., MacGill, I.: Impact of operational constraints on generation portfolio planning with renewables. In: Power & Energy Society General Meeting, 2015 IEEE. IEEE, pp. 1–5 (2015)

    Google Scholar 

  47. Belderbos, A., Delarue, E.: Accounting for flexibility in power system planning with renewables. Int. J. Electr. Power Energy Syst. 71, 33–41 (2015)

    Article  Google Scholar 

  48. Palmintier, B.S., Webster, M.D.: Impact of operational flexibility on electricity generation planning with renewable and carbon targets. IEEE Trans. Sustainable Energy. 7(2), 672–684 (2015)

    Article  Google Scholar 

  49. Pereira, S., Ferreira, P., Vaz, A.I.F.: Generation expansion planning with high share of renewables of variable output. Appl. Energy. 190, 1275–1288 (2017)

    Article  Google Scholar 

  50. Ma, J., Silva, V., Belhomme, R., Kirschen, D.S., Ochoa, L.F.: Evaluating and planning flexibility in sustainable power systems. In: Power and Energy Society General Meeting (PES), 2013 IEEE. IEEE, pp. 1–11 (2013)

    Google Scholar 

  51. Lannoye, E., Flynn, D., O’Malley, M.: Evaluation of power system flexibility. IEEE Trans. Power Syst. 27(2), 922–931 (2012)

    Article  Google Scholar 

  52. Ulbig, A., Andersson, G.: Analyzing operational flexibility of electric power systems. Int. J. Electr. Power Energy Syst. 72, 155–164 (2015)

    Article  Google Scholar 

  53. Ma, J., Silva, V., Belhomme, R., Kirschen, D.S., Ochoa, L.F.: Exploring the use of flexibility indices in low carbon power systems. In: 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe). IEEE, pp. 1–5 (2012)

    Google Scholar 

  54. Zhao, J., Zheng, T., Litvinov, E.: A unified framework for defining and measuring flexibility in power system. IEEE Trans. Power Syst. 31(1), 339–347 (2016)

    Article  Google Scholar 

  55. Fang, Y., Sansavini, G.: Optimizing power system investments and resilience against attacks. Reliab. Eng. Syst. Saf. 159, 161–173 (2017)

    Article  Google Scholar 

  56. Meehl, G.A., Tebaldi, C.: More intense, more frequent, and longer lasting heat waves in the 21st century. Science. 305(5686), 994–997 (2004)

    Article  Google Scholar 

  57. Guerreiro, S.B., Dawson, R.J., Kilsby, C., Lewis, E., Ford, A.-i.: Future heat-waves, droughts and floods in 571 European cities. Environ. Res. Lett. 13(3), 034009 (2018)

    Article  Google Scholar 

  58. Poumadere, M., Mays, C., Le Mer, S., Blong, R.: The 2003 heat wave in France: dangerous climate change here and now. Risk Anal.: Int. J. 25(6), 1483–1494 (2005)

    Article  Google Scholar 

  59. Rocchetta, R., Li, Y., Zio, E.: Risk assessment and risk-cost optimization of distributed power generation systems considering extreme weather conditions. Reliab. Eng. Syst. Saf. 136, 47–61 (2015)

    Article  Google Scholar 

  60. Panteli, M., Pickering, C., Wilkinson, S., Dawson, R., Mancarella, P.: Power system resilience to extreme weather: fragility modelling, probabilistic impact assessment, and adaptation measures. IEEE Trans. Power Syst. 32, 3747–3757 (2017)

    Article  Google Scholar 

  61. Cadini, F., Agliardi, G.L., Zio, E.: A modeling and simulation framework for the reliability/availability assessment of a power transmission grid subject to cascading failures under extreme weather conditions. Appl. Energy. 185, 267–279 (2017)

    Article  Google Scholar 

  62. Cohen, S.M., Averyt, K., Macknick, J., Meldrum, J.: Modeling climate-water impacts on electricity sector capacity expansion. In: ASME 2014 Power Conference. American Society of Mechanical Engineers, pp. V002T10A007– V002T10A007 (2014)

    Google Scholar 

  63. Shao, C., Shahidehpour, M., Wang, X., Wang, X., Wang, B.: Integrated planning of electricity and natural gas transportation systems for enhancing the power grid resilience. IEEE Trans. Power Syst. 32(6), 4418–4429 (2017)

    Article  Google Scholar 

  64. Ke, X., Wu, D., Rice, J., Kintner-Meyer, M., Lu, N.: Quantifying impacts of heat waves on power grid operation. Appl. Energy. 183, 504–512 (2016)

    Article  Google Scholar 

  65. Liu, Y., Sioshansi, R., Conejo, A.J.: Multistage stochastic investment planning with multiscale representation of uncertainties and decisions. IEEE Trans. Power Syst. 33(1), 781–791 (2018)

    Article  Google Scholar 

  66. Shi, J., Oren, S.S.: Stochastic unit commitment with topology control recourse for power systems with large-scale renewable integration. IEEE Trans. Power Syst. 33(3), 3315–3324 (2018)

    Article  Google Scholar 

  67. Ershun, D., Zhang, N., Hodge, B.-M., Wang, Q., Lu, Z., Kang, C., Kroposki, B., Xia, Q.: Operation of a high renewable penetrated power system with CSP plants: a look-ahead stochastic unit commitment model. IEEE Trans. Power Syst. 34(1), 140–151 (2019)

    Article  Google Scholar 

  68. Ben-Tal, A., Nemirovski, A.: Robust optimization–methodology and applications. Math. Program. 92(3), 453–480 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  69. Zeng, B., Zhao, L.: Solving two-stage robust optimization problems using a column-and-constraint generation method. Oper. Res. Lett. 41(5), 457–461 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  70. Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain linear programs. Math. Program. 99(2), 351–376 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  71. Caunhye, A.M., Cardin, M.-A.: Towards more resilient integrated power grid capacity expansion: a robust optimization approach with operational flexibility. Energy Econ. 72, 20–34 (2018)

    Article  Google Scholar 

  72. Li, J., Li, Z., Liu, F., Ye, H., Zhang, X., Mei, S., Chang, N.: Robust coordinated transmission and generation expansion planning considering ramping requirements and construction periods. IEEE Trans. Power Syst. 33(1), 268–280 (2018)

    Article  Google Scholar 

  73. Ye, H., Li, Z.: Robust security-constrained unit commitment and dispatch with recourse cost requirement. IEEE Trans. Power Syst. 31(5), 3527–3536 (2016)

    Article  Google Scholar 

  74. Bertsimas, D., Litvinov, E., Sun, X.A., Zhao, J., Zheng, T.: Adaptive robust optimization for the security constrained unit commitment problem. IEEE Trans. Power Syst. 28(1), 52–63 (2013)

    Article  Google Scholar 

  75. Álvaro, L., Andy Sun, X., Litvinov, E., Zheng, T.: Multi-stage adaptive robust optimization for the unit commitment problem. Oper. Res. 64(1), 32–51 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  76. Lorca, A., Sun, X.A.: Multistage robust unit commitment with dynamic uncertainty sets and energy storage. IEEE Trans. Power Syst. 32(3), 1678–1688 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Zio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdin, A.F., Zio, E. (2019). Optimal Planning of Electric Power Systems. In: Fathi, M., Khakifirooz, M., Pardalos, P.M. (eds) Optimization in Large Scale Problems. Springer Optimization and Its Applications, vol 152. Springer, Cham. https://doi.org/10.1007/978-3-030-28565-4_10

Download citation

Publish with us

Policies and ethics