Skip to main content

Complementability and Maximality in Different Contexts: Ergodic Theory, Brownian and Poly-Adic Filtrations

  • Chapter
  • First Online:
Séminaire de Probabilités L

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 2252))

  • 470 Accesses

Abstract

The notions of complementability and maximality were introduced in 1974 by Ornstein and Weiss in the context of the automorphisms of a probability space, in 2008 by Brossard and Leuridan in the context of the Brownian filtrations, and in 2017 by Leuridan in the context of the poly-adic filtrations indexed by the non-positive integers. We present here some striking analogies and also some differences existing between these three contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually, Rokhlin’s theory ensures that if \(\mathcal {B}\) is a factor of a Lebesgue space \((Z,\mathcal {Z},\pi ,T)\), then there exists a map f from Z to some Polish space E such that \(\mathcal {B}\) is generated up to the negligible events by the map Φ : x↦(f(Tk(x)))kZ from Z to the product space EZ. Call ν =  Φ(π) = π ∘ Φ−1 the image measure of μ by Φ. Then the completion \((E^{\mathbf {Z}},\mathcal {B}(E^{\mathbf {Z}}),\nu )\) is a Lebesgue space, the shift operator S : (yk)kZ↦(yk+1)kZ is an automorphism of EZ, and S ∘ Φ =  Φ ∘ T.

    Conversely, if \((Y,\mathcal {Y},\nu ,S)\) is a dynamical system and Φ a measurable map from Z to Y  such that Φ(π) = ν and S ∘ Φ =  Φ ∘ T, then the σ-field \(\Phi ^{-1}(\mathcal {Y})\) is a factor of \((Z,\mathcal {Z},\pi ,T)\).

  2. 2.

    The inclusion \(\mathcal {U}_t = \mathcal {U}_\infty \cap \mathcal {Z}_t\) is immediate. To prove the converse, take \(A \in \mathcal {U}_\infty \cap \mathcal {Z}_t\). Since \(\mathcal {U}_\infty \) and \(\mathcal {Z}_t\) are independent conditionally on \(\mathcal {U}_t\), we get \(\mathbf {P}[A|\mathcal {U}_t] = \mathbf {P}[A|\mathcal {Z}_t] = {\mathbf {1}}_A\) a.s., so \(A \in \mathcal {U}_t \mod \mathbf {P}\).

  3. 3.

    Let Z be a n-dimensional Brownian motion and B be a m-dimensional Brownian motion in \(\mathcal {F}^Z\). Then one can find an \(\mathcal {F}^Z\)-predictable process M taking values in the set of all p × n real matrices whose rows form an orthonormal family, such that \(B = \int _0^\cdot M_s \mathrm {d} Z_s.\) In particular, the m rows of each matrix Ms are independent and lie in a n-dimensional vector space, so m ≤ n.

  4. 4.

    Aperiodicity of T means that π{z ∈ Z : ∃n ≥ 1, Tn(z) = z} = 0. We make this assumption to ensure the existence of generator.

  5. 5.

    Taking logarithms in base 2 is an arbitrary convention which associates one unity of information to any uniform Bernoulli random variable.

References

  1. S. Attal, K. Burdzy, M. Émery, Y. Hu, Sur quelques filtrations et transformations browniennes, in Séminaire de Probabilités, IXXX. Lecture Notes in Mathematics, vol. 1613 (Springer, Berlin, 1995), pp. 56–69

    Google Scholar 

  2. K. Berg, Convolution of invariant measures, maximal entropy. Math. Syst. Theory 3(2), 146–150 (1969)

    Article  MathSciNet  Google Scholar 

  3. J. Brossard, C. Leuridan, Filtrations browniennes et compléments indépendants, in Séminaire de Probabilités, XLI. Lecture Notes in Mathematics, vol. 1934 (2008), pp. 265–278

    Google Scholar 

  4. J. Brossard, M. Émery, C. Leuridan, Maximal Brownian motions. Ann. de l’IHP 45(3), 876–886 (2009)

    MathSciNet  MATH  Google Scholar 

  5. J. Brossard, M. Émery, C. Leuridan, Skew-Product Decomposition of Planar Brownian Motion and Complementability, in Séminaire de Probabilités, XLVI. Lecture Notes in Mathematics, vol. 2123 (Springer, Berlin, 2014), pp. 377–394

    Google Scholar 

  6. G. Ceillier, C. Leuridan, Filtrations at the threshold of standardness. Probab. Theory Relat. Fields 158(3–4), 785–808 (2014)

    Article  MathSciNet  Google Scholar 

  7. I. Cornfeld, S. Fomin, Y. Sinai, Ergodic theory, in Grundlehren der mathematischen Wissenschaften, vol. 245 (Springer, Berlin, 1982)

    Google Scholar 

  8. T. de la Rue, Espaces de Lebesgue, in Séminaire de Probabilités XXVII. Lecture Notes in Mathematics, vol. 1557 (Springer, Berlin, 1993), pp. 15–21

    Google Scholar 

  9. M. Émery, On certain almost Brownian filtrations. Ann. de l’IHP Probabilités et Stat. 41, 285–305 (2005)

    MathSciNet  MATH  Google Scholar 

  10. M. Émery, W. Schachermayer, On Vershik’s standardness criterion and Tsirelson’s notion of cosiness, in Séminaire de Probabilités, XXXV. Lecture Notes in Mathematics, vol. 1755 (Springer, Berlin, 2001), pp. 265–305

    Google Scholar 

  11. S. Kalikow, R. McCutcheon, An outline of Ergodic theory, in Cambridge Studies in Advanced Mathematics (Cambridge University, Cambridge, 2010)

    Book  Google Scholar 

  12. S. Laurent, On standardness and I-cosiness, in Séminaire de Probabilités, XLIII. Lecture Notes in Mathematics, vol. 2006 (2011), pp. 127–186

    Google Scholar 

  13. S. Laurent, The filtration of erased-word processes, in Séminaire de Probabilités, XLVIII, Lecture Notes in Mathematics, vol. 2168 (2017), pp. 445–458

    Article  Google Scholar 

  14. C. Leuridan, Poly-adic Filtrations, standardness, complementability and maximality. Ann. Probab. 45(2), 1218–1246 (2017)

    Article  MathSciNet  Google Scholar 

  15. D. Ornstein, Factors of Bernoulli shifts are Beroulli shifts. Adv. Math. 5, 349–364 (1971)

    Article  Google Scholar 

  16. D. Ornstein, Factors of Bernoulli shifts. Isr. J. Math. 21(2–3), 145–153 (1975)

    Article  MathSciNet  Google Scholar 

  17. D. Ornstein, B. Weiss, Finitely determined implies very weak Bernoulli. Isr. J. Math. 17(1), 94–104 (1974)

    Article  MathSciNet  Google Scholar 

  18. W. Parry, Entropy and Generators in Ergodic Theory (W.A. Benjamin Inc., Benjamin, 1969)

    MATH  Google Scholar 

  19. K. Petersen, Ergodic Theory (Cambridge University, Cambridge, 1981)

    MATH  Google Scholar 

  20. M. Smorodinsky, Processes with no standard extension. Isr. J. Math. 107, 327–331 (1998)

    Article  MathSciNet  Google Scholar 

  21. J.P. Thouvenot, Une classe de systèmes pour lesquels la conjecture de Pinsker est vraie. Isr. J. Math. 21, 208–214 (1975)

    Article  Google Scholar 

  22. A. Vershik, Theory of decreasing sequences of measurable partitions. Algebra i Analiz, 6(4), 1–68 (1994). English Translation: St. Petersburg Math. J. 6(4), 705–761 (1995)

    Google Scholar 

  23. H. von Weizsäcker, Exchanging the order of taking suprema and countable intersections of σ -algebras. Ann. Inst. H. Poincaré Sect. B 19(1), 91–100 (1983)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I thank A. Coquio, J. Brossard, M. Émery, S. Laurent, J.P. Thouvenot for their useful remarks and for stimulating conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Leuridan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leuridan, C. (2019). Complementability and Maximality in Different Contexts: Ergodic Theory, Brownian and Poly-Adic Filtrations. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) Séminaire de Probabilités L. Lecture Notes in Mathematics(), vol 2252. Springer, Cham. https://doi.org/10.1007/978-3-030-28535-7_6

Download citation

Publish with us

Policies and ethics