Skip to main content

Respiratory Mechanics and Gas Exchange in Thoracic Surgery: Changes in Classical Knowledge in Respiratory Physiology

  • Chapter
  • First Online:
Anesthesia in Thoracic Surgery

Abstract

Respiratory mechanics describe the lung function through pressure and flow and the interplay between the two during the respiratory cycle. Derived indices are volume, compliance and resistance (Hess, Respir Care 59(11):1773–1794, 2014). Thoracic surgery in most cases requires the separation of the lungs in order to allow surgery of or near one lung and ventilation of the other lung, while the perfusion to the non-ventilated lung is continued. This has profound implications for the gas exchange and respiratory mechanics.

The necessary opening of the pleural interface during thoracic surgery alters intra-thoracic lung volume. The collapsing lung is released from the outward “spring” of the chest wall and collapses towards residual volume (Lohser and Slinger, Anesth Analg 121(2):302–318, 2015). Furthermore, end-expiratory lung volume of the ventilated lung is reduced and perfusion–ventilation matching of the ventilated lung is changed. This berries additional potential sources of alveolar damage and development of hypoxemia compared with non-thoracic surgery (Ball et al., Eur J Anaesthesiol 35:724–726, 2018).

Lung injury is the leading cause of death after thoracic surgery (Lohser and Slinger, Anesth Analg 121(2):302–318, 2015). The main iatrogenic risk factors are due to the ventilator settings: Volu- and atelectrauma resulting in the so called ventilator induced lung injury (VILI). Ventilation management during one-lung ventilation (OLV) involves the interplay between respiratory mechanics, patient lung function and patient body morphology. Profound knowledge of lung physiology in thoracic surgery is essential to choose the best ventilator settings to allow adequate gas exchange and protect the lungs from VILI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hess DR. Respiratory mechanics in mechanically ventilated patients. Respir Care. 2014;59(11):1773–94.

    PubMed  Google Scholar 

  2. Lohser J, Slinger P. Lung injury after one-lung ventilation: a review of the pathophysiologic mechanisms affecting the ventilated and the collapsed lung. Anesth Analg. 2015;121(2):302–18.

    PubMed  Google Scholar 

  3. Ball L, Robba C, Gama de Abreu M, Pelosi P. Lung protection during one-lung ventilation: another piece in the puzzle. Eur J Anaesthesiol. 2018;35(10):724–6.

    PubMed  Google Scholar 

  4. Schwenninger D, Runck H, Schumann S, Haberstroh J, Priebe HJ, Guttmann J. Endoscopic imaging to assess alveolar mechanics during quasi-static and dynamic ventilatory conditions in rats with noninjured and injured lungs. Crit Care Med. 2013;41(5):1286–95.

    PubMed  Google Scholar 

  5. Mauri T, Yoshida T, Bellani G, Goligher EC, Carteaux G, Rittayamai N, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016;42(9):1360–73.

    PubMed  Google Scholar 

  6. Cinnella G, Grasso S, Natale C, Sollitto F, Cacciapaglia M, Angiolillo M, et al. Physiological effects of a lung-recruiting strategy applied during one-lung ventilation. Acta Anaesthesiol Scand. 2008;52(6):766–75.

    CAS  PubMed  Google Scholar 

  7. Valenza F, Ronzoni G, Perrone L, Valsecchi M, Sibilla S, Nosotti M, et al. Positive end-expiratory pressure applied to the dependent lung during one-lung ventilation improves oxygenation and respiratory mechanics in patients with high FEV1. Eur J Anaesthesiol. 2004;21(12):938–43.

    CAS  PubMed  Google Scholar 

  8. Ferrando C, Mugarra A, Gutierrez A, Carbonell JA, García M, Soro M, et al. Setting individualized positive end-expiratory pressure level with a positive end-expiratory pressure decrement trial after a recruitment maneuver improves oxygenation and lung mechanics during one-lung ventilation. Anesth Analg. 2014;118(3):657–65.

    PubMed  Google Scholar 

  9. Tusman G, Böhm SH, Melkun F, Staltari D, Quinzio C, Nador C, et al. Alveolar recruitment strategy increases arterial oxygenation during one-lung ventilation. Ann Thorac Surg. 2002;73(4):1204–9.

    PubMed  Google Scholar 

  10. Tusman G, Böhm SH, Sipmann FS, Maisch S. Lung recruitment improves the efficiency of ventilation and gas exchange during one-lung ventilation anesthesia. Anesth Analg. 2004;98(6):1604–9.

    PubMed  Google Scholar 

  11. Mascotto G, Bizzarri M, Messina M, Cerchierini E, Torri G, Carozzo A, et al. Prospective, randomized, controlled evaluation of the preventive effects of positive end-expiratory pressure on patient oxygenation during one-lung ventilation. Eur J Anaesthesiol. 2003;20(9):704–10.

    CAS  PubMed  Google Scholar 

  12. Slinger PD, Kruger M, McRae K, Winton T. Relation of the static compliance curve and positive end-expiratory pressure to oxygenation during one-lung ventilation. Anesthesiology. 2001;95(5):1096–102.

    CAS  PubMed  Google Scholar 

  13. Choi YS, Bae MK, Kim SH, Park J-E, Kim SY, Oh YJ. Effects of alveolar recruitment and positive end-expiratory pressure on oxygenation during one-lung ventilation in the supine position. Yonsei Med J. 2015;56(5):1421–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Madke GR, Forgiarini LA Jr, Grun G, Fontena E, Pereira RB, de Moraes MM, et al. Effect of positive end-expiratory pressure after porcine unilateral left lung transplant. Exp Clin Transplant. 2013;11(1):50–5.

    PubMed  Google Scholar 

  15. Ferrando C, Suarez-Sipmann F, Tusman G, León I, Romero E, Gracia E, et al. Open lung approach versus standard protective strategies: effects on driving pressure and ventilatory efficiency during anesthesia - a pilot, randomized controlled trial. PLoS One. 2017;12(5):e0177399.

    PubMed  PubMed Central  Google Scholar 

  16. Ferrando C, Soro M, Unzueta C, Suarez-Sipmann F, Canet J, Librero J, et al. Individualised perioperative open-lung approach versus standard protective ventilation in abdominal surgery (iPROVE): a randomised controlled trial. Lancet Respir Med. 2018;6(3):193–203.

    PubMed  Google Scholar 

  17. Spadaro S, Grasso S, Karbing DS, Fogagnolo A, Contoli M, Bollini G, et al. Physiologic evaluation of ventilation perfusion mismatch and respiratory mechanics at different positive end-expiratory pressure in patients undergoing protective one-lung ventilation. Anesthesiology. 2018;128(3):531–8.

    PubMed  Google Scholar 

  18. Purohit A, Bhargava S, Mangal V, Parashar VK. Lung isolation, one-lung ventilation and hypoxaemia during lung isolation. Indian J Anaesth. 2015;59(9):606–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Szegedi LL, Barvais L, Sokolow Y, Yernault JC, d’Hollander AA. Intrinsic positive end-expiratory pressure during one-lung ventilation of patients with pulmonary hyperinflation. Influence of low respiratory rate with unchanged minute volume. Br J Anaesth. 2002;88(1):56–60.

    CAS  PubMed  Google Scholar 

  20. Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–55.

    CAS  PubMed  Google Scholar 

  21. Hemmes SNT, de Abreu MG, Pelosi P, Schultz MJ. ESA Clinical Trials Network 2012: LAS VEGAS--Local assessment of ventilatory management during general anaesthesia for surgery and its effects on postoperative pulmonary complications: a prospective, observational, international, multicentre cohort study. Eur J Anaesthesiol. 2013;30(5):205–7.

    PubMed  Google Scholar 

  22. Neto AS, Hemmes SN, Barbas CS, Beiderlinden M, Fernandez-Bustamante A, Futier E, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016;4(4):272–80.

    PubMed  Google Scholar 

  23. Park M, Ahn HJ, Kim JA, Yang M, Heo BY, Choi JW, et al. Driving pressure during thoracic surgery: a randomized clinical trial. Anesthesiology. 2019;130(3):385–93.

    PubMed  Google Scholar 

  24. Rauseo M, Mirabella L, Grasso S, Cotoia A, Spadaro S, D’Antini D, et al. Peep titration based on the open lung approach during one lung ventilation in thoracic surgery: a physiological study. BMC Anesthesiol. 2018;18(1):156. https://doi.org/10.1186/s12871-018-0624-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369(22):2126–36.

    CAS  PubMed  Google Scholar 

  26. Marret E, Cinotti R, Berard L, Piriou V, Jobard J, Barrucand B, et al. Protective ventilation during anaesthesia reduces major postoperative complications after lung cancer surgery: a double-blind randomised controlled trial. Eur J Anaesthesiol. 2018;35(10):727–35.

    PubMed  Google Scholar 

  27. Sundar S, Novack V, Jervis K, Bender SP, Lerner A, Panzica P, et al. Influence of low tidal volume ventilation on time to extubation in cardiac surgical patients. Anesthesiology. 2011;114(5):1102–10.

    PubMed  PubMed Central  Google Scholar 

  28. Slinger PD. Optimizing one-lung ventilation: moving beyond tidal volume. J Cardiothorac Vasc Anesth. 2018;32(6):2673–5.

    PubMed  Google Scholar 

  29. ARDS-Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342(18):1301–8.

    Google Scholar 

  30. Cressoni M, Gallazzi E, Chiurazzi C, Marino A, Brioni M, Menga F, et al. Limits of normality of quantitative thoracic CT analysis. Crit Care. 2013;17(3):R93. https://doi.org/10.1186/cc12738.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Martin DC, Richards GN. Predicted body weight relationships for protective ventilation - unisex proposals from pre-term through to adult. BMC Pulm Med. 2017;17(1):85. https://doi.org/10.1186/s12890-017-0427-1.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vidal Melo MF, Musch G, Kaczka DW. Pulmonary pathophysiology and lung mechanics in anesthesiology: a case-based overview. Anesthesiol Clin. 2012;30(4):759–84.

    PubMed  PubMed Central  Google Scholar 

  33. Washko GR, O’Donnell CR, Loring SH. Volume-related and volume-independent effects of posture on esophageal and transpulmonary pressures in healthy subjects. J Appl Physiol (1985). 2006;100(3):753–8.

    Google Scholar 

  34. Klingstedt C, Baehrendtz S, Bindslev L, Hedenstierna G. Lung and chest wall mechanics during differential ventilation with selective PEEP. Acta Anaesthesiol Scand. 1985;29(7):716–21.

    CAS  PubMed  Google Scholar 

  35. Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med. 2005;31(6):776–84.

    PubMed  Google Scholar 

  36. Larsson A, Malmkvist G, Werner O. Variations in lung volume and compliance during pulmonary surgery. Br J Anaesth. 1987;59(5):585–91.

    CAS  PubMed  Google Scholar 

  37. Carvalho AR, Ichinose F, Schettino IA, Hess D, Rojas J, Giannella-Neto A, et al. Tidal lung recruitment and exhaled nitric oxide during coronary artery bypass grafting in patients with and without chronic obstructive pulmonary disease. Lung. 2011;189(6):499–509.

    CAS  PubMed  Google Scholar 

  38. Lee SM, Kim WH, Ahn HJ, Kim JA, Yang MK, Lee CH, et al. The effects of prolonged inspiratory time during one-lung ventilation: a randomised controlled trial. Anaesthesia. 2013;68(9):908–16.

    CAS  PubMed  Google Scholar 

  39. Gattinoni L, Carlesso E, Langer T. Towards ultraprotective mechanical ventilation. Curr Opin Anaesthesiol. 2012;25(2):141–7.

    PubMed  Google Scholar 

  40. Plataki M, Hubmayr RD. The physical basis of ventilator-induced lung injury. Expert Rev Respir Med. 2010;4(3):373–85.

    PubMed  PubMed Central  Google Scholar 

  41. Lan CC, Chang CY, Peng CK, Wu CP, Huang KL, Lee SC, et al. Effect of body positions on hemodynamics and gas exchange in anesthetized pigs shortly after pneumonectomy. Shock. 2010;34(5):482–7.

    PubMed  Google Scholar 

  42. Reinius H, Borges JB, Engström J, Ahlgren O, Lennmyr F, Larsson A, et al. Optimal PEEP during one-lung ventilation with capnothorax: an experimental study. Acta Anaesthesiol Scand. 2019;63(2):222–31.

    CAS  PubMed  Google Scholar 

  43. Ribas J, Jimenez MJ, Barbera JA, Roca J, Gomar C, Canalis E, et al. Gas exchange and pulmonary hemodynamics during lung resection in patients at increased risk: relationship with preoperative exercise testing. Chest. 2001;120(3):852–9.

    CAS  PubMed  Google Scholar 

  44. Brewer LA. The first pneumonectomy. Historical notes. J Thorac Cardiovasc Surg. 1984;88(5 Pt 2):810–26.

    PubMed  Google Scholar 

  45. Graham EA, Singer JJ. Landmark article Oct 28, 1933. Successful removal of an entire lung for carcinoma of the bronchus. By Evarts A. Graham and J. J. Singer. JAMA. 1984;251(2):257–60.

    CAS  PubMed  Google Scholar 

  46. Bender SP, Anderson EP, Hieronimus RI, Bensimhon A. One-lung ventilation and acute lung injury. Int Anesthesiol Clin. 2018;56(1):88–106.

    PubMed  Google Scholar 

  47. West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol. 1964;19:713–24.

    CAS  PubMed  Google Scholar 

  48. Downs JB, Robinson LA, Steighner ML, Thrush D, Reich RR, Rasanen JO. Open lung ventilation optimizes pulmonary function during lung surgery. J Surg Res. 2014;192(2):242–9.

    PubMed  Google Scholar 

  49. Campos JH, Feider A. Hypoxia during one-lung ventilation—a review and update. J Cardiothorac Vasc Anesth. 2018;32(5):2330–8.

    PubMed  Google Scholar 

  50. Torda TA, McCulloch CH, O’Brien HD, Wright JS, Horton DA. Pulmonary venous admixture during one-lung anaesthesia. The effect of inhaled oxygen tension and respiration rate. Anaesthesia. 1974;29(3):272–9.

    CAS  PubMed  Google Scholar 

  51. Hedenstierna G, Tokics L, Strandberg A, Lundquist H, Brismar B. Correlation of gas exchange impairment to development of atelectasis during anaesthesia and muscle paralysis. Acta Anaesthesiol Scand. 1986;30(2):183–91.

    CAS  PubMed  Google Scholar 

  52. Lumb AB, Slinger P. Hypoxic pulmonary vasoconstriction: physiology and anesthetic implications. Anesthesiology. 2015;122(4):932–46.

    CAS  PubMed  Google Scholar 

  53. Glasser SA, Domino KB, Lindgren L, Parcella P, Marshall C, Marshall BE. Pulmonary blood pressure and flow during atelectasis in the dog. Anesthesiology. 1983;58(3):225–31.

    CAS  PubMed  Google Scholar 

  54. Benumof JL. One-lung ventilation and hypoxic pulmonary vasoconstriction: implications for anesthetic management. Anesth Analg. 1985;64(8):821–33.

    CAS  PubMed  Google Scholar 

  55. Tacconi F, Pompeo E. Non-intubated video-assisted thoracic surgery: where does evidence stand? J Thorac Dis. 2016;8(Suppl 4):S364–75.

    PubMed  PubMed Central  Google Scholar 

  56. Hung M-H, Hsu H-H, Cheng Y-J, Chen J-S. Nonintubated thoracoscopic surgery: state of the art and future directions. J Thorac Dis. 2014;6(1):2–9.

    PubMed  PubMed Central  Google Scholar 

  57. Guo Z, Yin W, Pan H, Zhang X, Xu X, Shao W, et al. Video-assisted thoracoscopic surgery segmentectomy by non-intubated or intubated anesthesia: a comparative analysis of short-term outcome. J Thorac Dis. 2016;8(3):359–68.

    PubMed  PubMed Central  Google Scholar 

  58. Irons JF, Martinez G. Anaesthetic considerations for non-intubated thoracic surgery. J Vis Surg. 2016;2:61. https://doi.org/10.21037/jovs.2016.02.22. eCollection 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pompeo E, Rogliani P, Tacconi F, Dauri M, Saltini C, Novelli G, et al. Randomized comparison of awake nonresectional versus nonawake resectional lung volume reduction surgery. J Thorac Cardiovasc Surg. 2012;143(1):47–54.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Gama de Abreu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wittenstein, J., Pelosi, P., Belda, F.J., Hedenstierna, G., Gama de Abreu, M. (2020). Respiratory Mechanics and Gas Exchange in Thoracic Surgery: Changes in Classical Knowledge in Respiratory Physiology. In: Granell Gil, M., Şentürk, M. (eds) Anesthesia in Thoracic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-28528-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28528-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28527-2

  • Online ISBN: 978-3-030-28528-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics