Skip to main content

Candida–Bacterial Biofilms and Host–Microbe Interactions in Oral Diseases

  • Conference paper
Oral Mucosal Immunity and Microbiome

Abstract

Oral cavity harbors a complex and highly diverse microbial community. Cross-kingdom interactions between Candida and oral bacteria are critical for their co-existence, which may also affect the course and the severity of biofilm-mediated bacterial-mediated diseases. C. albicans has been found in polymicrobial biofilms associated with denture stomatitis, oral mucositis, dental caries, periodontal diseases, peri-implantitis, and root canal infection. Thus, it is of utmost importance to unravel the mechanisms of Candida–bacterial interactions and their impact on the onset and severity of cross-kingdom biofilm-related diseases. Here, we highlight the potential role of Candida–bacterial biofilm interactions in the pathogenesis of oral diseases, especially mucosal infections and dental caries. The influence of Candida–bacterial biofilms on the mucosal host immune response is also discussed. Finally, we present some of the current and prospective therapeutic strategies for controlling these cross-kingdom interactions and their virulence properties associated with oral diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn, K. B., Kim, A. R., Kum, K. Y., Yun, C. H., & Han, S. H. (2017). The synthetic human-beta-defensin-3 C15 peptide exhibits antimicrobial activity against Streptococcus mutans, both alone and in combination with dental surfactants. Journal of Microbiology, 55, 830–836.

    CAS  PubMed  Google Scholar 

  • Alves, L. A., Carli, T. R., Harth-Chu, E. N., Mariano, F. S., Hofling, J. F., Stipp, R. N., & Mattos-Graner, R. O. (2019). Oral streptococci show diversity in resistance to complement immunity. Journal of Medical Microbiology. https://doi.org/10.1099/jmm.0.000955.

    CAS  PubMed  Google Scholar 

  • Arzmi, M. H., Dashper, S., Catmull, D., Cirillo, N., Reynolds, E. C., & McCollough, M. (2015). Coaggregation of Candida albicans, Actinomyces naeslundii and Streptococcus mutans is Candida albicans strain dependent. FEMS Yeast Research, 15(5), fov038.

    PubMed  Google Scholar 

  • Bachtiar, E. W., Bachtiar, B. M., Jarosz, L. M., Amir, L. R., Sunarto, H., Ganin, H., Meijler, M. M., & Krom, B. P. (2014). Ai-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation. Frontiers in Cellular and Infection Microbiology, 4, 94.

    PubMed  PubMed Central  Google Scholar 

  • Bamford, C. V., d’Mello, A., Nobbs, A. H., Dutton, L. C., Vickermann, M. M., & Jenkinson, H. F. (2009). Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infection and Immunity, 77, 3696–3704.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bechinger, B., & Gorr, S. U. (2017). Antimicrobial peptides: Mechanisms of action and resistance. Journal of Dental Research, 96, 254–260.

    CAS  PubMed  Google Scholar 

  • Beirão, S., Fernandes, S., Coelho, J., Faustino, M. A., Tomé, J. P., Neves, M. G., Tomé, A. C., Almeida, A., & Cunha, A. (2014). Photodynamic inactivation of bacterial and yeast biofilms with a cationic porphyrin. Photochemistry and Photobiology, 90, 1387–1396.

    PubMed  Google Scholar 

  • Belkaid, Y., & Harrison, O. J. (2017). Homeostatic immunity and the microbiota. Immunity, 46, 562–576. https://doi.org/10.1016/j.immuni.2017.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertolini, M. M., Xu, H., Sobue, T., Nobile, C. J., Del Bel Cury, A. A., & Dongari-Bagtzoglou, A. (2015). Candida-streptococcal mucosal biofilms display distinct structural and virulence characteristics depending on growth conditions and hyphal morphotypes. Molecular Oral Microbiology, 30, 307–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bielecka, E., Scavenius, C., Kantyka, T., Jusko, M., Mizgalska, D., Szmigielski, B., Potempa, B., Enghild, J. J., Prossnitz, E. R., Blom, A. M., & Potemba, J. (2018). Peptidyl arginine deiminase from Porphyromonas gingivalis abolishes anaphylotoxin C5a activity. The Journal of Biological Chemistry, 47, 3281–3287.

    Google Scholar 

  • Bor, B., Cen, L., Agnello, M., Shi, W., & He, X. (2016). Morphological and physiological changes induced by contact-dependent interaction between Candida albicans and Fusobacterium nucleatum. Scientific Reports, 6, 27956.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouillaguet, S., Manoil, D., Girard, M., Loius, J., Gaia, N., Leo, S., Schrenzel, J., & Lazarevic, V. (2018). Root microbiota in primary and secondary apical periodontitis. Frontiers in Microbiology, 9, 2374.

    PubMed  PubMed Central  Google Scholar 

  • Bowen, W. H., Burne, R. A., Wu, H., & Koo, H. (2018, March). Oral biofilms: Pathogens, matrix, and polymicrobial interactions in microenvironments. Trends in Microbiology, 26, 229–242.

    Google Scholar 

  • Budtz-Jørgensen, E. (2000). Ecology of Candida-associated denture stomatitis. Microbial Ecology in Health and Disease, 12, 170–185.

    Google Scholar 

  • Caiaffa, K. S., Massurani, L., Danelon, M., Abuna, G. F., Bedran, T. B. L., Santos-Filho, N. A., Spolidorio, D. M. P., Vizoto, N. L., Cilli, E. M., & Duque, C. (2017). KR-12-a5 is a non-cytotoxic agent with potent antimicrobial effects against oral pathogens. Biofouling, 33, 807–818.

    CAS  PubMed  Google Scholar 

  • Canabarro, A., Valle, C., Farias, M. R., Santos, F. B., Lazera, M., & Wanke, B. (2013). Association of subgingival colonization of Candida albicans and other yeasts with severity of chronic periodontitis. Journal of Periodontal Research, 48, 428–432.

    CAS  PubMed  Google Scholar 

  • Capestany, C. A., Kuboniwa, M., Jung, I. Y., Park, Y., Tribble, G. D., & Lamont, R. J. (2006). Role of the Porphyromonas gingivalis InlJ protein in homotypic and heterotypic biofilm development. Infection and Immunity, 74(5), 3002–3005.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalcanti, Y. W., Morse, D. J., Silva, W. J., Del Bel Cury, A. A., Wei, X., Wilson, M., Milward, P., Lewis, M., Bradshaw, D., & Williams, D. D. (2015). Virulence and pathogenicity of Candida albicans is enhanced in biofilms containing bacteria. Biofouling, 31(1), 27–38.

    CAS  PubMed  Google Scholar 

  • Cavalcanti, I. M. G., Nobbs, A. H., Ricomini-Filho, A. P., Jenkinson, H. F., & Del Bel Cury, A. A. (2016). Interkingdom cooperation between Candida albicans, Streptococcus oralis and Actinomyces oris modulates early biofilm development on denture material. Pathogens and Disease, 74, ftw002.

    PubMed  Google Scholar 

  • Cavalcanti, I. M. G., Del Bel Cury, A. A., Jenkinson, H. F., & Nobbs, A. H. (2017). Interactions between Streptococcus oralis, Actinomyces oris and Candida albicans in the development of multispecies oral microbial biofilms on salivary pellicle. Molecular Oral Microbiology, 32, 60–73.

    CAS  PubMed  Google Scholar 

  • Chen, X., & Alonzo, F. (2019). Bacterial lipolysis of immune-activating ligands promotes evasion of innate defenses. Proceedings of the National Academy of Sciences of the United States of America, 116, 3764–3773.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, T., Jackson, J. W., Tams, R. N., Davis, S. E., Sparer, T. E., & Reynolds, T. B. (2019a). Exposure of Candida albicans β (1,3)-glucan is promoted by activation of the Cek1 pathway. PLoS Genetics, 15(1), e1007892. https://doi.org/10.1371/journal.pgen.1007892. eCollection 2019a January.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Z., Yang, G., Lu, S., Chen, D., Fan, S., Xu, J., Wu, B., & He, J. (2019b). Design and antimicrobial activities of LL-37 derivatives inhibiting the formation of Streptococcus mutans biofilm. Chemical Biology & Drug Design, 93(6), 1175–1185.

    CAS  Google Scholar 

  • Crump, K. E., & Sahingur, S. E. (2016, January). Microbial nucleic acid sensing in oral and systemic diseases. Journal of Dental Research, 95(1), 17–25. https://doi.org/10.1177/0022034515609062.

    PubMed  Google Scholar 

  • Cruz, M. R., Graham, C. E., Gagliano, B. C., Lorenz, M. C., & Garsin, D. A. (2013). Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infection and Immunity, 81, 189–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dawes, C. (2003, December). What is the critical pH and why does a tooth dissolve in acid? Journal of the Canadian Dental Association, 69, 722–724.

    Google Scholar 

  • de Oliveira, J. R., de Jesus, D., Figueira, L. W., de Oliveira, F. E., Pacheco Soares, C., Camargo, S. E., Jorge, A. O., & de Oliveira, L. D. (2017). Biological activities of Rosmarinus officinalis L. (rosemary) extract as analyzed in microorganisms and cells. Experimental Biology and Medicine (Maywood), 242, 625–634.

    Google Scholar 

  • Deng, L., Li, W., He, Y., Wu, J., Ren, B., & Zou, L. (2019). Cross-kingdom interaction of Candida albicans and Actinomyces viscosus elevated cariogenic virulence. Archives of Oral Biology, 100, 106–112.

    CAS  PubMed  Google Scholar 

  • Diaz, P. I., Dupuy, A. K., Abusleme, L., Reese, B., Obergfell, C., Choquette, L., Dongari-Bagtzoglou, A., Peterson, D. E., Terzi, E., & Strausbaugh, L. D. (2012a). Using high throughput sequencing to explore the biodiversity in oral bacteria communities. Molecular Oral Microbiology, 27, 182–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz, P. I., Xie, Z., Sobue, T., Thompson, A., Biyikoglu, B., Ricker, A., et al. (2012b). Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model. Infection and Immunity, 80, 620–632.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz, P. I., Strausbaugh, L. D., & Dongari-Bagtzoglou, A. (2014). Fungal-bacterial interactions and their relevance to oral health: Linking the clinic and the bench. Frontiers in Cellular and Infection Microbiology, 4, 101.

    PubMed  PubMed Central  Google Scholar 

  • Dominguez, E. G., Zarnowski, R., Choy, H. L., Zhao, M., Sanchez, H., Nett, J. E., & Andes, D. R. (2019). Conserved role for biofilm matrix polysaccharides in Candida auris drug resistance. mSphere, 4, e00680–e00618.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dongari-Bagtzoglou, A., Kashleva, H., Dwivedi, P., Diaz, P., & Vasilakos, J. (2009, November). Characterization of mucosal Candida albicans biofilms. PLoS One, 244(11), e7967.

    Google Scholar 

  • Dutton, L. C., Nobbs, A. H., Jepson, K., Jepson, M. A., Vickermann, M. M., Alawfi, S. A., Munro, C. A., Lamont, R. J., & Jenkinson, H. F. (2014). O-mannosylation in Candida albicans enables development of interkingdom biofilm communities. mBio, 5(2), e00911–e00914. https://doi.org/10.1128/mBio.00911-14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebersole, J. L., Dawson, D., 3rd, Emecen-Huja, P., Nagarajan, R., Howard, K., Grady, M. E., Thompson, K., Peyyala, R., Al-Attar, A., Lethbridge, K., Kirakodu, S., & Gonzalez, O. A. (2017, October). The periodontal war: Microbes and immunity. Periodontology 2000, 75(1), 52–115. https://doi.org/10.1111/prd.12222. Review.

    PubMed  Google Scholar 

  • Ellepola, K., Liu, Y., Cao, T., Koo, H., & Seneviratne, C. J. (2017). Bacterial GtfB augments Candida albicans accumulation in cross-kingdom biofilms. Journal of Dental Research, 96, 1129–1135.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falsetta, M. L., Klein, M. I., Colonne, P. M., Scott-Anne, K., Gregoire, S., Pai, C.-H., et al. (2014). Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infection and Immunity, 82, 1968–1981.

    PubMed  PubMed Central  Google Scholar 

  • Fernandes, R. A., Monteiro, D. R., Arias, L. S., Fernandes, G. L., Delbem, A. C., & Barbosa, D. B. (2016). Biofilm formation by Candida albicans and Streptococcus mutans in the presence of farnesol: A quantitative evaluation. Biofouling, 32(3), 329–338.

    CAS  PubMed  Google Scholar 

  • Fleming, D., & Rumbaugh, K. P. (2017). Approaches to dispersing medical biofilms. Microorganisms, 5, 15.

    PubMed Central  Google Scholar 

  • Fleming, D., & Rumbaugh, K. (2018). The consequences of biofilm dispersal on the host. Scientific Reports, 8, 10738.

    PubMed  PubMed Central  Google Scholar 

  • Fleming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: An emergent form of bacterial life. Nature Reviews Microbiology, 14, 563–575.

    Google Scholar 

  • Gendreau, L., & Loewy, Z. G. (2011). Epidemiology and etiology of denture stomatitis. Journal of Prosthodontics, 20(4):251–260. https://doi.org/10.1111/j.1532-849X.2011.00698.x.

    PubMed  Google Scholar 

  • Ghannoum, M. A., Jurevic, R. J., Mukherjee, P. K., Cui, F., Sikaroodi, M., Naqvi, A., & Gillevet, P. M. (2011). Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathogens, 6(1), e1000713.

    Google Scholar 

  • Gomes, B. P. F. A., & Herrera, D. R. (2018, October 18). Etiologic role of root canal infection in apical periodontitis and its relationship with clinical symptomatology. Brazilian Oral Research, 32(Suppl. 1), e69. https://doi.org/10.1590/1807-3107bor-2018.vol32.0069.

  • Graham, C. E., Cruz, M. R., Garsin, D. A., & Lorenz, M. C. (2017). Enterococcus faecalis bacteriocin Entv inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. Proceedings of the National Academy of Sciences of the United States of America, 114, 4507–4512.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greber, K. E., & Dawgul, M. (2017). Antimicrobial peptides under clinical trials. Current Topics in Medicinal Chemistry, 17, 620–628.

    CAS  PubMed  Google Scholar 

  • Gregoire, S., Xiao, J., Silva, B. B., Gonzalez, I., Agidi, P. S., Klein, M. I., et al. (2011). Role of glucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces. Applied and Environmental Microbiology, 77, 6357–6367.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hajishengallis, E., Parsaei, Y., Klein, M. I., & Koo, H. (2017). Advances in the microbial etiology and pathogenesis of early childhood caries. Molecular Oral Microbiology, 32, 24–34.

    CAS  PubMed  Google Scholar 

  • He, J., Kim, D., Zhou, X., Ahn, S.-J., Burne, R. A., Richards, V. P., & Koo, H. (2017). RNA-Seq reveals enhanced sugar metabolism in Streptococcus mutans co-cultured with Candida albicans within mixed-species biofilms. Frontiers in Microbiology, 8, 1036.

    PubMed  PubMed Central  Google Scholar 

  • Hou, J., Zheng, H., Li, P., Liu, H., Zhou, H., & Yang, X. (2018). Distinct shifts in the oral microbiota are associated with the progression and aggravation of mucositis during radiotherapy. Radiotherapy and Oncology, 129, 44–51.

    PubMed  Google Scholar 

  • Hwang, G., Marsh, G., Gao, L., Waugh, R., & Koo, H. (2015, September). Binding Force Dynamics of Streptococcus mutans-glucosyltransferase B to Candida albicans. Journal of Dental Research, 94(9), 1310–1317.

    Google Scholar 

  • Hwang, G., Liu, Y., Kim, D., Li, Y., Krysan, D. J., & Koo, H. (2017). Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo. PLoS Pathogens, 13, 1–25.

    Google Scholar 

  • Jack, A. A., Daniels, D. E., Jepson, M. A., Vickerman, M. M., Lamont, R. J., Jenkinson, H. F., & Nobbs, A. H. (2015, February). Streptococcus gordonii comCDE (competence) operon modulates biofilm formation with Candida albicans. Microbiology, 161(Pt 2), 411–421.

    Google Scholar 

  • Jacobsen, I. D., Wilson, D., Wächtler, B., Brunke, S., Naglik, J. R., & Hube, B. (2012, January) Candida albicans dimorphism as a therapeutic target. Expert Review of Anti-Infective Therapy, 10(1), 85–93.

    Google Scholar 

  • Jafri, H., Khan, M. S. A., & Ahmad, I. (2019). In vitro efficacy of eugenol in inhibiting single and mixed-biofilms of drug-resistant strains of Candida albicans and Streptococcus mutans. Phytomedicine, 15(54), 206–213.

    Google Scholar 

  • Jarosz, L. M., Deng, D. M., Van Der Mei, H. C., Crielaard, W., & Krom, B. P. (2009). Streptococcus mutans competence stimulating peptide inhibits candida albicans hypha formation. Eukaryotic Cell, 8, 1658–1664.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jean, J., Goldberg, S., Khare, R., Bailey, L. C., Forrest, C. B., Hajishengallis, E., & Koo, H. (2018). Retrospective analysis of Candida-related conditions in and early childhood caries. Pediatric Dentistry, 40, 131–135.

    PubMed  PubMed Central  Google Scholar 

  • Jenkinson, H., & Demuth, D. R. (1997). Structure, function and immunogenicity of streptococcal antigen I/II polypeptides. Molecular Microbiology, 23, 183–190.

    CAS  PubMed  Google Scholar 

  • Johnson, C. J., Cabezas-Olcoz, J., Kernien, J. F., Wang, S. X., Beebe, D. J., Huttenlocher, A., Ansari, H., & Nett, J. E. (2016). The extracellular matrix of Candida albicans biofilms impairs formation of neutrophil extracellular traps. PLoS Pathogens, 12, e1005884.

    PubMed  PubMed Central  Google Scholar 

  • Joyner, P. M., Liu, J., Zhang, Z., Merritt, J., Qi, F., & Cichewicz, R. H. (2010, December 21). Mutanobactin A from the human oral pathogen Streptococcus mutans is a cross-kingdom regulator of the yeast-mycelium transition. Organic & Biomolecular Chemistry, 8(24), 5486–5489. https://doi.org/10.1039/c0ob00579g. Epub 2010 Sept 20.

    CAS  Google Scholar 

  • Kaplan, C. W., Lux, R., Haake, S. K., & Shi, W. (2009). The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm. Molecular Microbiology, 71(1), 35–47.

    CAS  PubMed  Google Scholar 

  • Karkowska-Kuleta, J., Bartnicka, D., Zawrotniak, M., Zielinska, G., Kieronska, A., Bochenska, O., Ciaston, I., Koziel, J., Potempa, J., Baster, Z., Rajfur, Z., Rapala-Kozik, M. & (2018, June 1). The activity of bacterial peptidylarginine deiminase is important during formation of dual-species biofilm by periodontal pathogen Porphyromonas gingivalis and opportunistic fungus Candida albicans. Pathogens and Disease, 76(4). https://doi.org/10.1093/femspd/fty033.

  • Kean, R., Rajendran, R., Haggarty, J., Townsend, E. M., Short, B., Burgess, K. E., Lang, S., Millington, O., Mackay, W. G., Williams, C., & Ramage, G. (2017, February 23). Candida albicans mycofilms support Staphylococcus aureus colonization and enhances miconazole resistance in dual-species interactions. Frontiers in Microbiology, 8, 258. https://doi.org/10.3389/fmicb.2017.00258. eCollection 2017.

  • Kernien, J. F., Johnson, C. J., & Nett, J. E. (2017). Conserved inhibition of neutrophil extracellular trap release by clinical Candida albicans biofilms. Journal of Fungi, 3, 49.

    PubMed  PubMed Central  Google Scholar 

  • Kernien, J. F., Snarr, B. D., Sheppard, D. C., & Nett, J. E. (2018). The interface between fungal biofilms and innate immunity. Frontiers in Microbiology, 8, 1968.

    Google Scholar 

  • Kim, D., Sengupta, A., Niepa, T. H. R., Lee, B.-H., Weljie, A., Freitas-Blanco, V. S., et al. (2017). Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites. Scientific Reports, 7, 41332. https://doi.org/10.1038/srep41332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, D., Liu, Y., Benhamou, R. I., Sanchez, H., Simon-Soro, A., Li, Y., Hwang, G., Fridman, M., Andes, D. R., & Koo, H. (2018). Bacterial-derived exopolysaccharides enhance antifungal drug tolerance in a cross-kingdom oral biofilm. ISME Journal, 12, 1427–1442.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong, E. F., Kucharikova, S., van Dijck, P., Peters, B. M., Shirtliff, M. E., & Jabra-Rizk, M. A. (2015). Clinical implications of oral candidiasis: Host tissue damage and disseminated bacterial disease. Infection and Immunity, 83, 604–613.

    PubMed  PubMed Central  Google Scholar 

  • Kong, E. F., Tsui, C., Kucharíková, S., Andes, D., Van Dijck, P., & Jabra-Rizk, M. A. (2016). Commensal protection of Staphylococcus aureus against antimicrobials by Candida albicans biofilm matrix. mBio, 7(5), e01365–e01316. https://doi.org/10.1128/mBio.01365-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong, E. F., Tsui, C., Kucharikova, S., van Dijck, P., & Jabra-Rizk, M. A. (2017). Modulation of Staphylococcus aureus response to antimicrobials by the Candida albicans quorum sensing molecule farnesol. Antimicrobial Agents and Chemotherapy, 61, e01573–e01517.

    PubMed  PubMed Central  Google Scholar 

  • Koo, H., Hayacibara, M. F., Schobel, B. D., Cury, J. A., Rosalen, P. L., Park, Y. K., Vacca-Smith, A. M., & Bowen, W. H. (2003). Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. Journal of Antimicrobial Chemotherapy, 52, 782–789.

    CAS  PubMed  Google Scholar 

  • Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P., & Hall-Stoodley, L. (2017). Targeting microbial biofilms: Current and prospective therapeutic strategies. Nature Reviews. Microbiology, 15, 740–755.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koo, H., Andes, D. R., & Krysan, D. J. (2018). Candida–streptococcal interactions in biofilm associated oral diseases. PLoS Pathogens, 14(12), 1007342.

    Google Scholar 

  • Lamont, R. J., Koo, H., & Hajishengallis, G. (2018). The oral microbiota: Dynamic communities and host interactions. Nature Reviews. Microbiology, 16, 745–759.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langfeldt, D., Neulinger, S. C., Stiesch, M., Stumpp, N., Bang, C., Schmitz, R. A., & Eberhard, J. (2014). Health and disease-associated species clusters in complex natural biofilms determine the innate immune response in oral epithelial cells during biofilm maturation. FEMS Letters, 360, 137–143.

    CAS  Google Scholar 

  • Lewis, N., Parmar, N., Hussain, Z., Baker, G., Howlett, J., Kearns, A., Cookson, B., McDonald, A., Wilson, M., & Ready, D. (2015). Colonization of denture by Staphylococcus aureus and MRSA in out-patient and in-patient populations. European Journal of Clinical Microbiology & Infectious Diseases, 34, 1823–1826.

    CAS  Google Scholar 

  • Lilly, E. A., Ikeh, M., Nash, E. E., Fidel, P. L., Jr., & Noverr, M. C. (2018, January 16). Immune Protection against Lethal Fungal-Bacterial Intra-Abdominal Infections. MBio, 9(1), e01472–e01417.

    Google Scholar 

  • Liu, Y., & Filler, S. G. (2011). Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryotic Cell, 10, 168–173.

    PubMed  PubMed Central  Google Scholar 

  • Liu, H., Chen, H., Sun, Y., Zhang, X., Lu, H., Li, J., Cao, J., & Zhou, T. (2019, March). Characterization of the mechanism and impact of staphylokinase on the formation of Candida albicans and Staphylococcus aureus polymicrobial biofilms. Journal of Medical Microbiology, 68(3), 355–367.

    Google Scholar 

  • Lohse, M. B., Gulati, M., Johnson, A. D., & Nobile, C. J. (2018). Development and regulation of single- and multi-species Candida albicans biofilms. Nature Reviews. Microbiology, 16, 19–31.

    CAS  PubMed  Google Scholar 

  • Marsh, P. D., & Zaura, E. (2017). Dental biofilm: Ecological interactions in health and disease. Journal of Clinical Periodontology, 44(18), S12–S22.

    PubMed  Google Scholar 

  • Mergoni, G., Percudani, D., Lodi, G., Bertani, P., & Manfredi, M. (2018). Prevalence of Candida species in endodontic infections: Systematic review and meta-analysis. Journal of Endodontics, 44, 1616–1625.

    PubMed  Google Scholar 

  • Mitchell, K. F., Zarnowski, R., & Andes, D. R. (2016). Fungal super glue: The biofilm matrix and its composition, assembly, and functions. PLoS Pathogens, 12(9), e1005828. https://doi.org/10.1371/journal.ppat.1005828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mombelli, A., & Decaillet, F. (2011). The characteristics of biofilms in peri-implant diseases. Journal of Clinical Periodontology, 38, 203–213.

    PubMed  Google Scholar 

  • Monika, S., Malgorzata, B., & Zbigniew, O. (2017). Contribution of aspartic proteases in Candida virulence. Protease inhibitors against Candida infections. Current Protein & Peptide Science, 18, 1050–1062.

    CAS  Google Scholar 

  • Montelongo-Jauregui, D., & Lopez-Ribot, J. L. (2018). Candida interactions with oral bacteria microbiota. Journal of Fungi, 4, 122. https://doi.org/10.3390/jof4040122.

    Article  CAS  PubMed Central  Google Scholar 

  • Montelongo-Jauregui, D., Srinivasan, A., Ramasubramanian, A. K., & Lopez-Ribot, J. L. (2016). An in vitro model for oral mixed biofilms of Candida albicans and Streptococcus gordonii in synthetic saliva. Frontiers in Microbiology, 7, 686.

    PubMed  PubMed Central  Google Scholar 

  • Montelongo-Jauregui, D., Srinivasan, A., Ramasubramanian, A. K., & Lopez-Ribot, J. L. (2018). An in vitro model for Candida albicans (-)Streptococcus gordonii biofilms on titanium surfaces. Journal of Fungi, 4, 66.

    PubMed Central  Google Scholar 

  • Mukaremera, L., Lee, K. K., Mora-Montes, H. M., & Gow, N. A. R. (2017). Candida albicans yeast, pseudohyphal, and hyphal morphogenesis differentially affects immune recognition. Frontiers in Immunology, 8, 629.

    PubMed  PubMed Central  Google Scholar 

  • Munro, C. A., Bates, S., Buurman, E. T., Hughes, H. B., MacCallum, D. M., Bertram, G., Atrih, A., Ferguson, M. A. J., Bain, J. M., Brand, A., Hamilton, S., Westwater, C., Thomson, L. M., Brown, A. J. P., Odds, F. C., & Gow, N. A. R. (2005, January 14). Mnt1p and Mnt2p of Candida albicans are partially redundant α-1,2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence. The Journal of Biological Chemistry, 280(2), 1051–1060.

    Google Scholar 

  • Nakayama, J., Cao, Y., Horii, T., Sakuda, S., Akkermans, A. D., de Vos, W. M., & Nagasawa, H. (2001). Gelatinase biosynthesis-activating pheromone: A peptide lactone that mediates a quorum sensing in Enterococcus faecalis. Molecular Microbiology, 41, 145–154.

    CAS  PubMed  Google Scholar 

  • Nash, E. E., Peters, B. M., Palmer, G. E., Fidel, P. L., & Noverr, M. C. (2014). Morphogenesis is not required for Candida albicans-Staphylococcus aureus intra-abdominal infection-mediated dissemination and lethal sepsis. Infection and Immunity, 82, 3426–3435.

    PubMed  PubMed Central  Google Scholar 

  • Negrini, T. C., Duque, C., Vizoto, N. L., Stipp, R. N., Mariano, F. S., et al. (2012). Influence of VicRK and CovR on the interactions of Streptococcus mutans with phagocytes. Oral Diseases, 18, 485–493.

    CAS  PubMed  Google Scholar 

  • Nett, J. E., Zarnowski, R., Cabezas-Olcoz, J., Brooks, E. G., Bernhardt, J., Marchillo, K., Mosher, D. F., & Andes, D. R. (2015). Host contributions to construction of three device-associated Candida albicans biofilms. Infection and Immunity, 83, 4630–4638.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nett, J. E., Cabezas-Olcoz, J., Marchillo, K., Mosher, D. F., & Andes, D. R. (2016). Targeting fibronectin to disrupt in vivo Candida albicans biofilms. Antimicrobial Agents and Chemotherapy, 60, 3152–3155.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nobile, C. J., Nett, J. E., Andes, D. R., & Mitchell, A. P. (2006). Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryotic Cell, 5, 1604–1610.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noble, S. M., Gianetti, B. A., & Witchley, J. N. (2017, February). Candida albicans cell-type switching and functional plasticity in the mammalian host. Nature Reviews. Microbiology, 15(2), 96–108.

    Google Scholar 

  • Nuti, R., Goud, N. S., Saraswati, A. P., Alvala, R., & Alvala, M. (2017). Antimicrobial peptides: A promising therapeutic strategy in tackling antimicrobial resistance. Current Medicinal Chemistry, 24, 4303–4314.

    CAS  PubMed  Google Scholar 

  • O’Donnell, L. E., Millhouse, E., Sherry, L., Kean, R., Malcolm, J., Nile, C. J., et al. (2015). Polymicrobial Candida biofilms: Friends and foe in the oral cavity. FEMS Yeast Research, 15, 1–14.

    Google Scholar 

  • Oliveira, S. A., Zambrana, J. R., Iorio, F. B., Pereira, C. A., & Jorge, A. O. (2014). The antimicrobial effects of Citrus limonum and Citrus aurantium essential oils on multi-species biofilms. Brazilian Oral Research, 28, 22–27.

    PubMed  Google Scholar 

  • Paes Leme, A. F., Koo, H., Bellato, C. M., Bedi, G., & Cury, J. A. (2006). The role of sucrose in cariogenic dental biofilm formation—New insight. Journal of Dental Research, 85, 878–887.

    CAS  PubMed  Google Scholar 

  • Palma, A. L. D. R., Paula-Ramos, L., Domingues, N., Back-Brito, G. N., de Oliveira, L. D., Pereira, C. A., & Jorge, A. O. C. (2018). Biofilms of Candida albicans and Streptococcus sanguinis and their susceptibility to antimicrobial effects of photodynamic inactivation. Photodiagnosis and Photodynamic Therapy, 24, 95–101.

    CAS  PubMed  Google Scholar 

  • Peerson, I. F., Crielaard, W., & Ozok, A. R. (2017). Prevalence and nature of fungi in root canal infections: A systematic review and meta-analysis. International Endodontic Journal, 50, 1055–1066.

    Google Scholar 

  • Pereira, C. A., Romeiro, R. L., Costa, A. C., Machado, A. K., Junqueira, J. C., & Jorge, A. O. (2011). Susceptibility of Candida albicans, Staphylococcus aureus, and Streptococcus mutans biofilms to photodynamic inactivation: An in vitro study. Lasers in Medical Science, 26, 341–348.

    PubMed  Google Scholar 

  • Pereira, C. A., Toledo, B. C., Santos, C. T., Costa, A. B. P., Back-Brito, G. N., Kaminagakura, E., & Jorge, A. O. C. (2013). Opportunistic microorganisms in individuals with lesions of denture stomatitis. Archives of Oral Biology, 76, 419–424.

    Google Scholar 

  • Perez-Chaparro, P. J., Gonçalves, C., Figueiredo, L. C., Faveri, M., Lobao, E., Tamashiro, M., Duarte, P., & Feres, M. (2014). Newly identified pathogens associated with periodontitis: A systematic review. Journal of Dental Research, 93, 846–858.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peters, B. M., Jabra-Rizk, M. A., Scheper, M. A., Leid, J. G., Costerton, W., & Shirtliff, M. E. (2010). Microbial interactions and differential protein expression in Staphylococcus aureus-Candida albicans dual-species biofilms. FEMS Immunology and Medical Microbiology, 59, 493–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peters, B. M., Ovchinnikova, E. S., Krom, B. P., Schlecht, L. M., Zhou, H., Hoyer, L. L., Busscher, H. J., vand der Mei, H. C., Jabra-Rizk, M. A., & Shitliff, M. E. (2012). Staphylococcus aureus adherence to Candida albicans is mediated by hyphal adhesin Als3p. Microbiology, 158, 2975–2986.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peters, B. A., Wu, J., Hayes, R. B., & Ahn, J. (2017). The oral fungal mycobiome: Characteristics and relation to periodontitis in a pilot study. BMC Microbiology, 17, 157.

    PubMed  PubMed Central  Google Scholar 

  • Pietrocola, G., Nobile, G., Rindi, S., & Speziale, P. (2017). Staphylococcus aureus manipulates innate immunity through own and host-expressed proteases. Frontiers in Cellular and Infection Microbiology, 7:166. https://doi.org/10.3389/fcimb.2017.00166.

  • Pletzer, D., Coleman, S. R., & Hancock, R. E. W. (2016). Anti-biofilm peptides as a new weapon in antimicrobial warfare. Current Opinion in Microbiology, 33, 35–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polke, M., Leonhardt, I., Kurzai, O., & Jacobsen, I. D. (2018). Farnesol signalling in Candida albicans—More than just communication. Critical Reviews in Microbiology, 44, 230–243.

    CAS  PubMed  Google Scholar 

  • Qu, Y., Locock, K., Verma-Gaur, J., Hay, I. D., Meagher, L., & Traven, A. (2016). Searching for new strategies against polymicrobial biofilm infections: Guanylated polymethacrylates kill mixed fungal/bacterial biofilms. The Journal of Antimicrobial Chemotherapy, 71, 413–421.

    CAS  PubMed  Google Scholar 

  • Quishida, C. C., De Oliveira Mima, E. G., Jorge, J. H., Vergani, C. E., Bagnato, V. S., & Pavarina, A. C. (2016). Photodynamic inactivation of a multispecies biofilm using curcumin and LED light. Lasers in Medical Science, 31, 997–1009.

    PubMed  Google Scholar 

  • Raber-Durlacher, J. E., Elad, S., & Barasch, A. (2010). Oral mucositis. Oral Oncology, 46, 452–456.

    PubMed  Google Scholar 

  • Ranjan, A., & Dongari-Bagtzoglou, A. (2018, September 18). Tipping the balance: C. albicans adaptation in polymicrobial environments. Journal of Fungi (Basel), 4(3), E112.

    Google Scholar 

  • Ren, Z., Kim, D., Paula, A. J., Hwang, G., Liu, Y., Li, J., Daniell, H., & Koo, H. (2019, January 24). Dual-targeting approach degrades biofilm matrix and enhances bacterial killing. J Dent Res, 98(3), 322–330. https://doi.org/10.1177/0022034518818480.

    CAS  PubMed  Google Scholar 

  • Ricker, A., Vickerman, M., & Dongari-Bagtzoglou, A. (2014). Streptococcus gordonii glucosyltransferase promotes biofilm interactions with Candida albicans. Journal of Oral Microbiology, 29, 6. https://doi.org/10.3402/jom.v6.23419.

    Article  CAS  Google Scholar 

  • Rijkschroeff, P., Loos, B. G., & Nicu, E. A. (2018). Oral polymorphonuclear neutrophil contributes to oral health. FEMS Immunology and Medical Microbiology, 5(4), 211–220. https://doi.org/10.1007/s40496-018-0199-6. Epub 2018 Oct 25.

    Article  Google Scholar 

  • Romo, J. A., Pierce, C. G., Chaturvedi, A. K., Lazzell, A. L., McHardy, S. F., Saville, S. P., & Lopez-Ribot, J. L. (2017). Development of anti-virulence approaches for candidiasis via a novel series of small-molecule inhibitors of Candida albicans filamentation. mBio, 8, e01991–e01917.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samaranayake, L. P., Keung Leung, W., & Jin, L. (2009, February). Oral mucosal fungal infections. Periodontology 2000, 49, 39–59. https://doi.org/10.1111/j.1600-0757.2008.00291.x

    PubMed  Google Scholar 

  • Sangalli, J., Júnior, E. G. J., Bueno, C. R. E., Jacinto, R. C., Sivieri-Araújo, G., Filho, J. E. G., Cintra, L. T. Â., & Junior, E. D. (2018). Antimicrobial activity of Psidium cattleianum associated with calcium hydroxide against Enterococcus faecalis and Candida albicans: An in vitro study. Clinical Oral Investigations, 22, 2273–2279.

    PubMed  Google Scholar 

  • Scaffaro, R., Lopresti, F., D’Arrigo, M., Marino, A., & Nostro, A. (2018). Efficacy of poly(lactic acid)/carvacrol electrospun membranes against Staphylococcus aureus and Candida albicans in single and mixed cultures. Applied Microbiology and Biotechnology, 102, 4171–4181.

    CAS  PubMed  Google Scholar 

  • Schlecht, L. M., Peters, B. M., Krom, B. P., Freiberg, J. A., Hansch, G. M., Filler, S. G., Jabra-Rizk, M. A., & Shirtliff, M. E. (2015). Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology, 161, 168–181.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, J., Rosiana, S., Razzaq, I., & Shapiro, R. S. (2019). Linking cellular morphogenesis with antifungal treatment and susceptibility in Candida pathogens. Journal of Fungi, 5, 17. https://doi.org/10.3390/jof5010017.

    Article  PubMed Central  Google Scholar 

  • Sheiham, A., & James, W. P. (2015). Diet and dental caries: The pivotal role of free sugars reemphasized. Journal of Dental Research, 94(10), 1341–1347.

    CAS  PubMed  Google Scholar 

  • Shi, B., Wu, T., McLean, J., Edlund, A., Young, Y., He, X., Lv, H., Zhou, X., Shi, W., Li, H., & Lux, R. (2016). The denture-associated oral microbiome in health and stomatitis. mSphere, 1(6), e00215–e00216.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva, B. R., Conrado, A. J. S., Pereira, A. L., Evaristo, F. F. V., Arruda, F. V. S., Vasconcelos, M. A., Lorenzon, E. N., Cilli, E. M., & Teixeira, E. H. (2017). Antibacterial activity of a novel antimicrobial peptide [W7]KR12-KAEK derived from KR-12 against Streptococcus mutans planktonic cells and biofilms. Biofouling, 33, 835–846.

    PubMed  Google Scholar 

  • Silverman, R. J., Nobbs, A. H., Vickermann, M. M., Barbour, M. E., & Jenkinson, H. F. (2010). Interaction of Candida albicans cell wall Als3 protein with Streptococcus gordonii SspB adhesin promotes development of mixed-species communities. Infection and Immunity, 78, 4644–4652.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simon-Soro, A., & Mira, A. (2015). Solving the etiology of dental caries. Trends in Microbiology, 23, 76–82. Cell Press.

    CAS  PubMed  Google Scholar 

  • Stobernack, T., du Teil, E. M., Mulder, L. M., Palma Medina, L. M., Piebenga, D. R., Gabarrini, G., Zhao, X., Janssen, K. M. J., Hulzebos, J., Brouwer, E., Sura, T., Becher, D., van Winkelhoff, A. J., Götz, F., Otto, A., Westra, J., & van Dijl, J. M. (2018). A secreted bacterial peptidylarginine deiminase can neutralize human innate immune defenses. mBio, 9, e01704–e01718.

    PubMed  PubMed Central  Google Scholar 

  • Sztajer, H., Szafranski, S. P., Tomasch, J., Reck, M., Nimtz, M., Rohde, M., & Wagner-Döbler, I. (2014, November). Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans. The ISME Journal, 8(11), 2256–2271. https://doi.org/10.1038/ismej.2014.73. Epub 2014 May 13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sztukowska, M. N., Dutton, L. C., Delaney, C., Ramsdale, M., Ramage, G., Jenkinson, H. F., Nobbs, A. H., & Lamont, R. J. (2018). Community development between Porphyromonas gingivalis and Candida albicans mediated by InlJ and Als3. mBio, 9, e00202–e00218.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamai, R., Sugamata, M., & Kiyoura, Y. (2011). Candida albicans enhance invasion of human gingival epithelial cells and gingival fibroblasts by Porphyromonas gingivalis. Microbial Pathogenesis, 51, 250–254.

    CAS  PubMed  Google Scholar 

  • Tan, Y., Leonhard, M., Moser, D., Ma, S., & Schneider-Stickler, B. (2019, February 1). Antibiofilm efficacy of curcumin in combination with 2-aminobenzimidazole against single- and mixed-species biofilms of Candida albicans and Staphylococcus aureus. Colloids and Surfaces. B, Biointerfaces, 174, 28–34.

    Google Scholar 

  • Thomas, R. Z., Zijnge, V., Ciçek, A., de Soet, J. J., Harmsen, H. J. M., & Huysmans, M. C. D. N. J. M. (2012). Shifts in the microbial population in relation to in situ caries progression. Caries Research, 46, 427–431.

    CAS  PubMed  Google Scholar 

  • Ting, M., Craig, J., Balkin, B. E., & Suzuki, J. B. (2018). Peri-implantitis: A comprehensive overview of systematic reviews. Journal of Oral Implantology, 44, 225–247.

    PubMed  Google Scholar 

  • Turvey, S. E., & Broide, D. H. (2010). Innate immunity. The Journal of Allergy and Clinical Immunology, 125, S24–S32. https://doi.org/10.1016/j.jaci.2009.07.016.

    Article  PubMed  Google Scholar 

  • Uppuluri, P., Busscher, H. J., Chakladar, J., van der Mei, H. C., & Chaffin, W. L. (2017). Transcriptional profiling of C. albicans in a two species biofilm with Rothia dentocariosa. Frontiers in Cellular and Infection Microbiology, 7, 311.

    PubMed  PubMed Central  Google Scholar 

  • Vasconcelos, R. M., Sanfilippo, N., Paster, B. J., Kerr, A. R., Li, Y., Ramalho, L., Queiroz, E. L., Smith, B., Sonis, S. T., & Corby, P. M. (2016). Host-microbiome cross-talk in oral mucositis. Journal of Dental Research, 95, 725–733.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vendeville, A., Winzer, K., Heurlier, K., Tang, C. M., & Hardie, K. R. (2005). Making “sense” of metabolism: Autoinducer-2, LuxS and pathogenic bacteria. Nature Reviews Microbiology, 3, 383–396.

    CAS  PubMed  Google Scholar 

  • Vieira, A. P. M., Arias, L. S., de Souza Neto, F. N., Kubo, A. M., Lima, B. H. R., de Camargo, E. R., Pessan, J. P., Delbem, A. C. B., & Monteiro, D. R. (2019, February 1). Antibiofilm effect of chlorhexidine-carrier nanosystem based on iron oxide magnetic nanoparticles and chitosan. Colloids and Surfaces. B, Biointerfaces, 174, 224–231.

    Google Scholar 

  • Vilchez, R., Lemme, A., Ballhausen, B., Thiel, V., Schulz, S., Jansen, R., et al. (2010). Streptococcus mutans inhibits Candida albicans hyphal formation by the fatty acid signaling molecule trans-2-decenoic acid (SDSF). ChemBioChem, 11, 1552–1562.

    CAS  PubMed  Google Scholar 

  • Wang, H., Lin, L., Fu, W., Yu, H. Y., Yu, N., Tan, L., Cheng, J. W., & Pan, Y. (2017). Preventive effect of the novel antimicrobial peptide Nal-P-113 in a rat periodontitis model by limiting the growth of Porphyromonas gingivalis and modulating IL-1β and TNFα production. BMC Complementary and Alternative Medicine, 17, 426.

    PubMed  PubMed Central  Google Scholar 

  • Weidt, S., Haggarty, J., Kean, R., Cojocariu, C. I., Silcock, P. J., Rajendran, R., Ramage, G., & Burgess, K. E. (2016). A novel targeted/untargeted GC-Orbitrap metabolomics methodology applied to Candida albicans and Staphylococcus aureus biofilms. Metabolomics, 12(12), 189.

    PubMed  PubMed Central  Google Scholar 

  • Wolff, D., Frese, C., Maier-Kraus, T., Krueger, T., & Wolff, B. (2013). Bacterial biofilm composition in caries and caries-free subjects. Caries Research, 47, 69–77.

    CAS  PubMed  Google Scholar 

  • Wu, T., Cen, L., Kaplan, C., Zhou, X., Lux, R., Shi, W., & He, X. (2015). Cellular components mediating coadherence of Candida albicans and Fusobacterium nucleatum. Journal of Dental Research, 94, 1432–1438.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, J., Huang, X., Alkhers, N., Alzamil, H., Alzoubi, S., Wu, T. T., Castillo, D. A., Campbell, F., Davis, J., Herzog, K., Billings, R., Kopycka-Kedzierawski, D. T., Hajishengallis, E., & Koo, H. (2018a). Candida albicans and early childhood caries: A systematic review and meta-analysis. Caries Research, 52, 102–112.

    PubMed  Google Scholar 

  • Xiao, J., Grier, A., Faustoferri, R. C., Alzoubi, S., Gill, A. L., Feng, C., Liu, Y., Quivey, R. G., Kopycka-Kedzierawski, D. T., Koo, H., & Gill, S. R. (2018b). Association between oral Candida and bacteriome in children with severe ECC. Journal of Dental Research, 97, 1468–1476.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, H., Sobue, T., Thompson, A., Xie, Z., Poon, K., Ricker, A., Cervantes, J., Diaz, P. I., & Dongari-Bagtzoglou, A. (2014a). Streptococcal co-infection augments Candida pathogenicity by amplifying the mucosal inflammatory response. Cellular Microbiology, 6, 214–231.

    Google Scholar 

  • Xu, H., Jenkinson, H. F., & Dongari-Bagtzoglou, A. (2014b). Innocent until proven guilty: Mechanisms and roles of Streptococcus-Candida interactions in oral health and disease. Molecular Oral Microbiology, 29, 99–116.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, H., Sobue, T., Bertolini, M., Thompson, A., & Dongari-Bagtzoglou, A. (2016). Streptococcus oralis and Candida albicans synergistically activate m-Calpain to degrade E-cadherin from oral epithelial junctions. The Journal of Infectious Diseases, 214(6), 925–934.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, H., Sobue, T., Bertolini, M., Thompson, A., Vickerman, M., Nobile, C. J., et al. (2017). S. oralis activates the Efg1 filamentation pathway in C. albicans to promote cross-kingdom interactions and mucosal biofilms. Virulence, 8, 1602–1617.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, C., Scoffield, J., Wu, R., Deivanayagam, C., Zou, J., & Wu, H. (2018). Antigen I/II mediates interaction between Streptococcus mutans and Candida albicans. Molecular Oral Microbiology, 33, 283–291.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo, Y. J., Kwon, I., Oh, S. R., Perinpanayagam, H., Lim, S. M., Ahn, K. B., Lee, Y., Han, S. H., Chang, S. W., Baek, S. H., Zhu, Q., & Kum, K. Y. (2017). Antifungal effects of synthetic human beta-defensin-3-C15 peptide on Candida albicans infected root dentin. Journal of Endodontics, 11, 1857–1861.

    Google Scholar 

  • Zarnowski, R., Westler, W. M., Lacmbouh, G. A., Marita, J. M., Bothe, J. R., Bernhardt, J., Sahraoul, A. L. H., Fontaine, J., Sanchez, H., Hatfield, R. D., Ntambl, J. M., & Nett, J. E. (2014). Novel entries in a fungal biofilm matrix encyclopedia. mBio, 5(4), e01333–e01314.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaura, E., Keijser, B. J. F., Huse, S. M., & Crielaard, W. (2009). Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiology, 9, 259.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, S., Li, J., Jia, X., & Wu, Y. (2004). The expression of toll-like receptor 2 and 4 mRNA in local tissues of model of oropharyngeal candidiasis in mice. Journal of Huazhong University of Science and Technology. Medical Sciences, 24(6), 639–641.

    CAS  Google Scholar 

  • Zhao, C., Ling, B., Dong, L., et al. (2017). Theoretical insights into the protonation states of active site cysteine and citrullination mechanism of Porphyromonas gingivalis peptidylarginine deiminase. Proteins, 85, 1518–1528.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Fundação de Amparo à Pesquisa do Estado de São Paulo [FAPESP-BEPE 2018/18258-8 (T. C. Negrini)] and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior [CAPES-PEVEX 88881.171614/2018-01 (R. A. Arthur)].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun Koo or Rodrigo Alex Arthur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Cite this paper

Negrini, T.d.C., Koo, H., Arthur, R.A. (2019). Candida–Bacterial Biofilms and Host–Microbe Interactions in Oral Diseases. In: Belibasakis, G.N., Hajishengallis, G., Bostanci, N., Curtis, M.A. (eds) Oral Mucosal Immunity and Microbiome. Advances in Experimental Medicine and Biology, vol 1197. Springer, Cham. https://doi.org/10.1007/978-3-030-28524-1_10

Download citation

Publish with us

Policies and ethics