Skip to main content

Issues and Challenges in Instrumental Proof

  • Chapter
  • First Online:
Book cover Proof Technology in Mathematics Research and Teaching

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 14))

Abstract

Our article aims to define the notion of instrumental proof based on didactic, epistemological and cognitive considerations. We raise issues and challenges related to the use of this type of proof in mathematical work and mathematical thinking. The theory of mathematical working spaces serves as a construct on which we address questions about proof, reasoning and epistemic necessity, taking advantage of the possibilities offered by the development geneses and fibrations in an instrumented perspective. The coordination of the semiotic, discursive and instrumental geneses of the working space founds discursive-graphic proofs, mechanical proofs and algorithmic proofs that are activated at school in the subject-milieu interactions. We end with a discussion on some consequences of the computer-assisted modelling of the learning conditions of mathematics, and we conclude on a necessary reconciliation of heuristics and validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From Brousseau’s theory of didactical situations in mathematics (1998).

  2. 2.

    This translation was provided in 1881 by J. Kaines from the edition of the Éléments de géométrie published in Paris in 1830. In the original in French (“cette induction présumée porte avec elle sa demonstration”), Clairaut (1741) attempts to convince the reader of the relevance of a conjecture through inductive reasoning, before embarking on a deductive demonstration.

  3. 3.

    This is the association Échecs et Maths, a pun in French that also means “checkmate” (retrieved April 17, 2018 from https://echecs.org/les-bienfaits-des-echecs).

  4. 4.

    Coding and algorithmic learning platform using a visual and dynamic programming language in which programs are designed by assembling graphic elements (accessible April 17, 2018 at https://scratch.mit.edu/).

  5. 5.

    See Richard (2004a, 2004b) for a definition of a figural inference, and Coutat, Laborde, and Richard (2016), for the instrumented figural inference.

  6. 6.

    We also write “Ettor Eusobio”. The Thesaurus of the Consortium of European Research Librairies (CERL) considers him as an instrument maker (from German “instrumentenbauer”, see https://thesaurus.cerl.org/record/cnp02134922), and in the 1678 edition of Leonardo Fioravanti’s Dello specchio di scientia universale, it is said of him: “the great philosopher and mathematician, Mr. Ettor Eusobio da Venetia; inventor of the most beautiful mathematical material ever seen” (p. 94).

  7. 7.

    The author explained that part of his resolution program is inspired by the website Choux romanesco, Vache qui rit et intégrales curvilignes accessible from http://eljjdx.canalblog.com/.

  8. 8.

    Although we know that solving algorithmically a problem of proof and using a program to verify a set of particular cases is not the same thing, we can state as Clairaut said that an algorithm often carries with it its own demonstration. This wink to our quotation of Clairaut in an algorithmic context comes from Simon Modeste.

  9. 9.

    It is still common to hear at conferences that automated reasoning, however used, is not appropriate for learning mathematical proof in school. Even very recently, a colleague showed us an anonymous assessor’s comment for the evaluation of an important project: “automatic proofs are not necessarily suitable for educational purposes, therefore most parts of action are somewhat out of interest in this context”. This point of view seems to us similar to the one where, in the 1970s, it was feared that students would no longer learn to calculate, after the introduction of calculators in schools. Paradoxically, this artefact is today practically tossed in the dustbin of history in favor of tools once unthinkable.

  10. 10.

    Freeware by Pascal Brachet (2018) available at http://www.xm1math.net/algobox/.

  11. 11.

    For more information, see the analysis of student texts and of the editorial organization from Duval (1995), and the analyses of the strategic contexture of proofs in secondary school by Richard (2004a).

  12. 12.

    This international newsletter on the teaching and learning of mathematical proof, whose current name is simply Preuve, is available at http://www.lettredelapreuve.org (ISSN 1292-8763).

  13. 13.

    The first English translation of How to solve it still dates from 1945.

  14. 14.

    From http://dynamicmathematicslearning.com/area-parallelogram-partition-richard-theorem.html.

References

  • Alsina, C., & Nelsen, R. (2006). Math made visual. Creating images for understanding mathematics. Washington: The Mathematical Association of America.

    Google Scholar 

  • Appel, K., & Haken, W. (1977). The solution of the four-color-map problem. Scientific American, 237(4), 108–121. https://doi.org/10.1038/scientificamerican1077-108.

    Article  Google Scholar 

  • Arzarello, F. (2006). Semiosis as a multimodal process. Revista latinoamericana de investigación en matemática educativa, 9(1), 267–299.

    Google Scholar 

  • Balacheff, N. (1987). Processus de preuve et situations de validation. Educational Studies in Mathematics, 18(2), 147–176.

    Article  Google Scholar 

  • Balacheff, N., & Margolinas, C. (2005). Ck¢, modèle de connaissances pour le calcul de situations didactiques. In A. Mercier & C. Margolinas (Eds.), Balises pour la didactique des mathématiques (pp. 75–106). Grenoble: La Pensée Sauvage.

    Google Scholar 

  • Barbin, É., Duval, R., Giorgiutti, I., Houdebine, J., & Laborde, C. (2001). Produire et lire des textes de démonstration. Paris: Éditions Ellipses.

    Google Scholar 

  • Bartle, R. G., & Sherbert, D. R. (2011). Introduction to real analysis (4th ed.). Wiley & Sons.

    Google Scholar 

  • Bartolini Bussi, M.G., & Maschietto, M. (2005). Macchine Matematiche: Dalla storia alla scuola. Springer.

    Google Scholar 

  • Blum, W., & Leiß, D. (2007). How do students and teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA12): Education, engineering and economics (pp. 222–231). Chichester, UK: Horwood Publishing. https://doi.org/10.1533/9780857099419.5.221.

    Chapter  Google Scholar 

  • Borromeo-Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM—The International Journal on Mathematics Education, 38(2), 86–95. https://doi.org/10.1007/BF02655883.

    Article  Google Scholar 

  • Boutin, F. (2017). Le cahier Transmath d’algorithmique Cycle 4 (5e/4e/3e). Nathan.

    Google Scholar 

  • Brousseau, G. (1998). Théorie des situations didactiques. Grenoble: La Pensée Sauvage.

    Google Scholar 

  • Brousseau, G. (2004). Introduction to the study of the teaching of reasoning and proof: Paradoxes. La lettre de la preuve—International newsletter on the teaching and learning of mathematical proof. Retrieved April 17, 2018, from http://www.lettredelapreuve.org/OldPreuve/Newsletter/04Ete/04EteThemeUK.html.

  • Bryant, J., & Sangwin, C. (2008). How round is your circle? Where engineering and mathematics meet. Princeton University Press.

    Google Scholar 

  • Castelnuovo, E., & Barra, M. (1976). Matematica nella realtà. Torino: Boringhieri.

    Google Scholar 

  • Chevallard, Y. (1992). La transposition didactique. Grenoble: La Pensée Sauvage.

    Google Scholar 

  • Clairaut, A.C. (1741). Élémens de Géométrie. Paris: David Fils.

    Google Scholar 

  • Clairaut, A.C. (1881). Elements of geometry. Traduction du texte de l’édition de 1830 publié à Paris. London: C. Kegan Paul & Co.

    Google Scholar 

  • Cormack, L.B. (2017). Introduction: Practical mathematics, practical mathematicians, and the case for transforming the study of nature. In L.B. Cormack, S.A. Walton, & J.A. Schuster (Eds.), Mathematical practitioners and the transformation of natural knowledge in Early Modern Europe (pp. 1–8), Studies in History and Philosophy of Science 45. https://doi.org/10.1007/978-3-319-49430-2_1.

    Google Scholar 

  • Coutat, S., Laborde, C., & Richard, P. R. (2016). L’apprentissage instrumenté de propriétés en géométrie: propédeutique à l’acquisition d’une compétence de démonstration. Educational Studies in Mathematics, 1–27. https://doi.org/10.1007/s10649-016-9684-9.

    Article  Google Scholar 

  • Derouet, C. (2016). La fonction de densité au carrefour entre probabilités et analyse en terminale S: Étude de la conception et de la mise en oeuvre de tâches d’introduction articulant lois à densité et calcul intégral. Thèse de doctorat, Sorbonne Paris Cité. https://tel.archives-ouvertes.fr/tel-01431913/document.

  • Dreyfus, T., Artigue, M., Potari, D., Prediger, S., & Ruthven, K. (2018). Developing research in mathematics education—Twenty years of communication, cooperation and collaboration in Europe. Oxon, UK: Routledge (ISBN: 978-1-138-08027-0).

    Google Scholar 

  • Dupré, S. (2006). Visualization in Renaissance optics: The function of geometrical diagrams and pictures in the transmission of practical knowledge. In S. Kusukawa & I. Maclean (Eds.), Transmitting knowledge : Words, images, and instruments in early modern Europe (pp. 11–39). Oxford University Press.

    Google Scholar 

  • Dupré, S. (2017). The making of practical optics: Mathematica practitioners’ appropriation of optical knowledge between theory and practice. In L.B. Cormack, S.A. Walton, & J.A. Schuster (Eds.), Mathematical practitioners and the transformation of natural knowledge in Early Modern Europe (pp. 131–148), Studies in History and Philosophy of Science 45. https://doi.org/10.1007/978-3-319-49430-2_7.

    Google Scholar 

  • Duval, R. (1995). Sémiosis et pensée humaine: registre sémiotique et apprentissages intellectuels. Berne: Peter Lang.

    Google Scholar 

  • Font, L., Richard, P.R., & Gagnon, M. (2018). Improving QED-Tutrix by automating the generation of proofs. In P. Quaresma & W. Neuper (Eds.), Proceedings 6th International Workshop on Theorem Proving Components for Educational Software, (ThEdu’17), Electronic Proceedings in Theoretical Computer Science (Vol. 267, pp. 38–58). https://doi.org/10.4204/eptcs.267.3.

    Article  Google Scholar 

  • Gray, E., & Tall, D. (1994). Duality, ambiguity and flexibility: A proceptual view of simple arithmetic. The Journal for Research in Mathematics Education, 26(2), 115–141.

    Google Scholar 

  • Haspekian, M. (2011). The co-construction of a mathematical and a didactical instrument. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education (CERME 7) (pp. 2298–2307). Rzeszów, Poland.

    Google Scholar 

  • Hoffmann, D.L., Standish, C.D., García-Diez, M., Pettitt, P.B., Milton, J.A., Zilhão, J., … Pike, W.G. (2018). U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art. Science, 359(6378), 912–915. https://doi.org/10.1126/science.aap7778.

    Article  Google Scholar 

  • Keller, A.G. (2017). Machines as mathematical instruments. In L.B. Cormack, S.A. Walton, & J.A. Schuster (Eds.), Mathematical practitioners and the transformation of natural knowledge in Early Modern Europe (pp. 115–127), Studies in History and Philosophy of Science 45. https://doi.org/10.1007/978-3-319-49430-2_6.

    Google Scholar 

  • Keller, O. (2004). Aux origines de la géométrie: le Paléolithique, le monde des chasseurs-cueilleurs. Paris: Vuibert.

    Google Scholar 

  • Kovács, Z. (2018). Motion with LEGOs and dynamic geometry. Virginia Mathematic Teacher, 44(2), 43–48.

    Google Scholar 

  • Kovács, Z., Recio, T., & Vélez, M. P. (2018a). Using automated reasoning tools in GeoGebra in the teaching and learning of proving in geometry. International Journal of Technology in Mathematics Education, 25(2), 33–50. https://doi.org/10.1564/tme_v25.2.03.

    Article  Google Scholar 

  • Kovács, Z., Recio, T., & Vélez, M.P. (2018b). Detecting truth, just on parts, in automated reasoning in geometry. In F. Botana, F. Gago, & M. Ladra (Eds.), Proceeding of the 24th Conference of Applications of Computer Algebra (pp. 32–35).

    Google Scholar 

  • Kovács, Z., Richard, P.R., Recio, T., & Vélez, M.P. (2017). GeoGebra automated reasoning tools: A tutorial with examples. In G. Aldon, & J. Trgalova (Eds.), Proceedings of the 13th International Conference on Technology in Mathematics Teaching (pp. 400–404). https://hal.archives-ouvertes.fr/hal-01632970.

  • Krieger, M.H. (2004). Some of what mathematicians do. Notices of the AMS, 51(10), 1226–1230.

    Google Scholar 

  • Kuzniak, A., & Richard, P.R. (2014). Espaces de travail mathématique. Point de vues et perspectives. Revista latinoamericana de investigación en matemática educativa 17.4(I), 5–40.

    Google Scholar 

  • Kuzniak, A., Richard P.R., & Michael-Chrysanthou, P. (2018). Chapter 1. From geometrical thinking to geometrical working competencies. In T. Dreyfus, M. Artigue, D. Potari, S. Prediger, & K. Ruthven (Eds.), Developing research in mathematics education—Twenty years of communication, cooperation and collaboration in Europe. New Perspectives on Research in Mathematics Education series (Vol. 1, pp. 8–22). Oxon, UK: Routledge (ISBN: 978-1-138-08027-0).

    Google Scholar 

  • Kuzniak, A., Tanguay, D., & Elia, I. (2016). Mathematical Working Spaces in schooling: An introduction. ZDM—The International Journal on Mathematics Education, 48(6), 721–737. https://doi.org/10.1007/s11858-016-0812-x.

    Article  Google Scholar 

  • Lagrange, J. B., Recio, T., Richard, P. R., & Vivier, L. (2017). Synthesis of topic 2—Specificities of tools and signs in the mathematical work. In I. Gómez-Chacón, A. Kuzniak, K. Nikolantonakis, P. R. Richard, & L. Vivier (Eds.), Actes du 5e symposium Espaces de Travail Mathématique (ETM 5) (pp. 207–239). Greece: University of Western Macedonia.

    Google Scholar 

  • Laval, D. (2018). L’algorithmique au lycée entre développement de savoirs spécifiques et usage dans différents domaines mathématiques. Thèse de doctorat, Sorbonne Paris Cité.

    Google Scholar 

  • Leduc, N. (2016). QED-tutrix: système tutoriel intelligent pour l’accompagnement des élèves en situation de résolution de problèmes de démonstration en géométrie plane. Thèse de doctorat, École Polytechnique de Montréal. https://publications.polymtl.ca/2450/.

  • Leduc, N., Tessier-Baillargeon, M., Corbeil, J. P., Richard, P. R., & Gagnon, M. (2017). Étude prospective d’un système tutoriel à l’aide du modèle des espaces de travail mathématique. In I. Gómez-Chacón, A. Kuzniak, K. Nikolantonakis, P. R. Richard, & L. Vivier (Eds.), Actes du 5e symposium Espaces de Travail Mathématique (ETM 5) (pp. 281–295). Greece: University of Western Macedonia.

    Google Scholar 

  • Modeste, S., Gravier, S., & Ouvrier-Buffet, C. (2010). Algorithmique et apprentissage de la preuve. Repères IREM, 79, 51–72.

    Google Scholar 

  • Moutet, L. (2016). Diagrammes et théorie de la relativité restreinte: Une ingénierie didactique. Thèse de doctorat, Sorbonne Paris Cité. https://hal.archives-ouvertes.fr/tel-01611332/document.

  • Netz, W., & Noel, W. (2008). Le codex d’Archimède—Les secrets du manuscrit le plus célèbre de la science. Paris: JC Lattès.

    Google Scholar 

  • Polya, G. (1973). How to solve it. A new aspect of mathematical method. New Jersey: Princeton University Press.

    Google Scholar 

  • Rabardel, P. (1995). Les hommes et les technologies, une approche cognitive des instruments contemporains. Paris: Armand Colin.

    Google Scholar 

  • Recio, T., Richard, P. R., & Vivier, L. (2015). Synthesis of topic 2—Specific features of tools and signs in the mathematical work. In I. Gómez-Chacón, J. Escribano, A. Kuzniak, & P. R. Richard (Eds.), Actes du 4e symposium Espaces de Travail Mathématique (ETM 4) (pp. 197–226). Spain: Universidad Complutense de Madrid.

    Google Scholar 

  • Richard, P. R. (2003). Proof without words: Equal areas in a partition of a parallelogram. Mathematics Magazine, 76(5), 348.

    Article  Google Scholar 

  • Richard, P. R. (2004a). Raisonnement et stratégies de preuve dans l’enseignement des mathématiques. Berne: Peter Lang.

    Google Scholar 

  • Richard, P. R. (2004b). L’inférence figurale: Un pas de raisonnement discursivo-graphique. Educational Studies in Mathematics, 57(2), 229–263.

    Article  Google Scholar 

  • Richard, P.R., Gagnon, M., & Fortuny, J.M. (2018). Chapter 20. Connectedness of problems and impasse resolution in the solving process in geometry: A major educational challenge. In P. Herbst, U.H. Cheah, P.R. Richard, & K. Jones (Eds.), International perspectives on the teaching and learning of geometry in secondary schools (19 pp.). Cham, Switzerland: Springer (ISBN: 978-3-319-77475-6).

    Google Scholar 

  • Richard, P. R., Oller, A. M., & Meavilla, V. (2016). The concept of proof in the light of mathematical work. ZDM—The International Journal on Mathematics Education, 48(6), 843–859. https://doi.org/10.1007/s11858-016-0805-9.

    Article  Google Scholar 

  • Sullivan, M. C. (2000). Knot factoring. The American Mathematical Monthly, 107(4), 297–315.

    Article  Google Scholar 

  • Tanguay, D., & Geeraerts, L. (2014). Conjecture, postulats et vérifications expérimentales dans le paradigme du géomètre physicien: comment intégrer le travail avec des logiciels de géométrie dynamique? Revista latinoamericana de investigación en matemática educativa 17.4(II), 287–302.

    Google Scholar 

  • Tanguay, D., & Venant, F. (2016). The semiotic and conceptual genesis of angle. ZDM—The International Journal on Mathematics Education, 48(6), 875–894. https://doi.org/10.1007/s11858-016-0789-5.

    Article  Google Scholar 

  • Tanguay, D., Kuzniak, A., & Gagatsis, A. (2015). Synthesis of topic 1—The mathematical work and mathematical working spaces. In I. Gómez-Chacón, J. Escribano, A. Kuzniak, & P. R. Richard (Eds.), Actes du 4e symposium Espaces de Travail Mathématique (ETM 4) (pp. 20–38). Spain: Universidad Complutense de Madrid.

    Google Scholar 

  • Tessier-Baillargeon, M. (2015). GeoGebraTUTOR: Développement d’un système tutoriel autonome pour l’accompagnement d’élèves en situation de résolution de problèmes de démonstration en géométrie plane et genèse d’un espace de travail géométrique idoine. Thèse de doctorat, Université de Montréal. https://papyrus.bib.umontreal.ca/xmlui/bitstream/handle/1866/15902/Tessier-Baillargeon_Michele_2016_these.pdf.

  • Tessier-Baillargeon, M., Leduc, N., Richard, P.R., Gagnon, M. (2017). Étude comparative de systèmes tutoriels pour l’exercice de la démonstration en géométrie. Annales de didactique et de sciences cognitives (Vol. 22, pp. 91–117). IREM de Strasbourg: Université Louis Pasteur.

    Google Scholar 

  • Trahan, A. (2016, October). Casse-tête de polygones. Workshop session presented at the 60th Congress of the Association Mathématique du Québec under the theme Des Mathématiques Surprenantes, Québec, Québec.

    Google Scholar 

  • Trouche, L. (2005). Construction et conduite des instruments dans les apprentissages mathématiques: nécessité des orchestrations. Recherche en Didactique des Mathématiques, 25, 91–138.

    Google Scholar 

  • Venant, F. (2018). Programmer les mathématiques: la pensé informatique à l’école primaire. Bulletin AMQ LVIII(3), 57–70.

    Google Scholar 

  • Villiers, M. (1993). El Papel y la Función de la demostración en matemáticas. Epsilon, 26, 15–30.

    Google Scholar 

  • Vitrac, B. (1992). À propos de la chronologie des œuvres d’Archimède. In J.Y. Guillaumin (Ed.), Mathématiques dans l’Antiquité (pp. 59–93). Publications de l’Université de Saint-Etienne.

    Google Scholar 

Download references

Acknowledgements

We wish sincerely to thank Prof. Annette Braconne-Michoux for her devoted and far-sighted work of linguistic review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe R. Richard .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Area Partition Activity

In an activity of dynamic geometry, de Villiers (2018)Footnote 14 proposes the study of situations which allow us to show that “to the working mathematician, proof is not merely a means of verifying an already discovered result, but often also a means of exploring, analyzing, discovering and inventing new results”. It begins by proposing an interactive version of the proof without words presented in Sect. 2.4, automatically providing the measures on both sides of equality:

This is a proof that is both mechanical and discursive-graphic, as is our considerations around Fig. 9. At the interface of the situation, the author adds a help button that participates in the devolution of the problem (hint) and a generalization button that allows the user to move to the next situation (pentagon). In fact, the user can always move to a more general situation (pentagon or to another (k+1)-gon, until an octagon) without even having solved the previous problem (parallelogram or k-gon):

This dynamicity of the activity makes it possible to identify invariants in the equality of areas of figures and to reinvest them in a set of proof problems:

Carefully reflect on your proof, and consider how this same proof can also apply to a certain type of pentagon, hexagon, etc. Make generalizations and check your generalized conjectures by clicking on the Link buttons on the right to go to pentagons, hexagons, etc. with a similar area partition property. (extract from the activity instructions)

It would then be a particularly rich activity of proof which also makes it possible to engage an algorithmic proof.

Appendix 2: Transcription of Text from Dense Figures

This is the sequential transcription of Trahan’s approach structured in Fig. 6.

Step 1

Theorem

(not surprising)

If you cut a polygon into a finite number of pieces to reform another, then both polygons will have the same area.

Theorem

(more surprising)

Should any two polygons have the same area, it is possible to cut the first into a finite number of pieces to then form the second.

Step 2

Propositions

(program)

  1. 1.

    Any polygon can be cut into a finite number of triangles.

  2. 2.

    Any triangle can be cut to form a rectangle.

  3. 3.

    Any rectangle can be cut to form a square.

  4. 4.

    Any pair of squares can be cut to form a square.

Resolution

(breakdown by case)

  1. 1.

    Demonstration in two cases: convex polygon and concave polygon.

  2. 2.

    Check the four corners of the rectangle and check the «joints» (alignment of points).

  3. 3.

    In a rectangle L by : case  < L ≤ 4 , checking of the angles, of the «joints» then sides; case L > 4 , check also lengths and sides.

  4. 4.

    Verification of angles, “joints” then sides.

Conclusion

Any polygon can be cut into a finite number of pieces to then form a square.

Step 3

Deriving proposition

If two polygons of the same surface can be cut into a finite number of pieces to each form a square, then there is a split of the first polygon to form the second.

Solution

Superposition of the two cuttings.

Can we do better?

Yes, the demonstration makes it possible to obtain a division between two polygons, but this is not optimal.

Verification

with interesting cuttings (demonstrated in other research work)

  • Square in equilateral triangle.

  • Square in nonagon.

  • Some cutting of the pentagon.

Step 4

New situations

(to pose and solve)

  • Generalization: curved surface?

  • Generalizations in 3 dimensions

  • (…)

Hilbert’s 3rd problem: given two polyhedra of equal volume, can we cut the first polyhedron into polyhedra and bring them together to form the second polyhedron?

  • No: Dehn found an invariant (Dehn invariant) that is preserved during a cut; the cube and the tetrahedron do not have the same invariant.

  • Some possible cuttings…

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Richard, P.R., Venant, F., Gagnon, M. (2019). Issues and Challenges in Instrumental Proof. In: Hanna, G., Reid, D., de Villiers, M. (eds) Proof Technology in Mathematics Research and Teaching . Mathematics Education in the Digital Era, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-28483-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28483-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28482-4

  • Online ISBN: 978-3-030-28483-1

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics