Skip to main content

Using 3D Geometry Systems to Find Theorems of Billiard Trajectories in Polyhedra

  • Chapter
  • First Online:
Proof Technology in Mathematics Research and Teaching

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 14))

  • 550 Accesses

Abstract

The use of 3D dynamic geometry systems (D3DGS) opens new topics in spatial geometry. These systems provide opportunities for discovery learning (enrichment) and support the application of heuristic methods for theorem finding (reinforcement). One of these topics is billiards in convex polyhedra. Discovering distinctive billiards trajectories in a cube and its generalizations is suitable for spatial geometry activities beyond regular classroom lessons. It is equivalent to the discovery of inscribed polygons with minimal perimeter. The findings reveal that spatial polygons may be similarly used to mark special convex polyhedra.

Billiards in Euclidean spaces of dimension three or more are essentially in an infantile state. In brief: practically nothing is known in general.

−Berger (2010)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bainville, E., & Laborde, J.-M. (2004–2015) Cabri 3D 2.1. Grenoble: Cabrilog (www.cabri.com).

  • Berger, M. (2010). Geometry revealed. A Jacob’s ladder to modern higher geometry (p. 728). Heidelberg: Springer.

    Google Scholar 

  • Borwein, J. (2012). Exploratory experimentation: digitally-assisted discovery and proof. In G. Hanna & M. de Villiers (Eds.), Proof and proving in mathematics education. New ICMI Study Series 15 (pp. 69–95). Springer. https://doi.org/10.1007/978-94-007-2129-6_4.

    Google Scholar 

  • De Villiers, M. (1990). The role and function of proof. Pythagoras, 24, 17–24.

    Google Scholar 

  • De Villiers, M. (2010). Experimentation and proof in mathematics. In G. Hanna, H. Jahnke & H. Pulte (Eds.), Explanation and proof in mathematics: Philosophical and educational perspectives (pp. 205–221). Springer. https://doi.org/10.1007/978-1-4419-0576-5_14.

    Google Scholar 

  • Efremovitch, V. A., & Il’jashenko, J. S. (1962). Regular Polygons in En (Russian). Bulletin Moscow University, Series I 17, No. 5, pp. 18–23.

    Google Scholar 

  • Galperin, G. A., & Semliakov, A. N. (1990). Mathematical billiards (Russian). Moskau: Nauka.

    Google Scholar 

  • Gardner, M. (1971). Martin Gardener’s sixth book of mathematical games from scientific American (pp. 29–38). San Francisco: W. H. Freeman.

    Google Scholar 

  • Gutierrez, A., Pegg, J., & Lawrie, C. (2004). Characterization of students’ reasoning and proof abilities in 3-dimensional geometry. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 511–518).

    Google Scholar 

  • Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies in Mathematics, 44, 5–23.

    Article  Google Scholar 

  • Harel, G. (2013). Intellectual need. In K. Leatham (Ed.), Vital directions for mathematics education research (pp. 119–151). New York (NY): Springer.

    Chapter  Google Scholar 

  • Hudelson, M. (not specifiable). Periodic omnihedral billiards in regular polyhedra and polytopes.

    Google Scholar 

  • Schumann, H. (2007). Schulgeometrie im virtuellen Handlungsraum (School geometry in the virtual action space). Hildesheim: Verlag Franzbecker.

    Google Scholar 

  • Schumann, H. (2017). Das räumliche Viereck – eine Einführung (The spatial quadrangle—An introduction). MNU Journal 6(70), 382–389.

    Google Scholar 

  • Tabachnikov, S. (2013). Geometrie und Billard (Geometry and Billiards). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Winter, H. (1989). Entdeckendes Lernen im Mathematikunterricht (Dicovery learning in the teaching of mathematics). Braunschweig: Verlag Vieweg.

    Book  Google Scholar 

Links

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Schumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schumann, H. (2019). Using 3D Geometry Systems to Find Theorems of Billiard Trajectories in Polyhedra. In: Hanna, G., Reid, D., de Villiers, M. (eds) Proof Technology in Mathematics Research and Teaching . Mathematics Education in the Digital Era, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-28483-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28483-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28482-4

  • Online ISBN: 978-3-030-28483-1

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics