Advertisement

Surgical Approaches for Cell Therapeutics Delivery to the Retinal Pigment Epithelium and Retina

  • Boris StanzelEmail author
  • Marius Ader
  • Zengping Liu
  • Juan Amaral
  • Luis Ignacio Reyes Aguirre
  • Annekatrin Rickmann
  • Veluchamy A. Barathi
  • Gavin S. W. Tan
  • Andrea Degreif
  • Sami Al-Nawaiseh
  • Peter Szurman
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1186)

Abstract

Developing successful surgical strategies to deliver cell therapeutics to the back of the eye is an essential pillar to success for stem cell-based applications in blinding retinal diseases. Within this chapter, we have attempted to gather all key considerations during preclinical animal trials.

Guidance is provided for choices on animal models, options for immunosuppression, as well as anesthesia. Subsequently we cover surgical strategies for RPE graft delivery, both as suspension as well as in monolayers in small rodents, rabbits, pigs, and nonhuman primate. A detailed account is given in particular on animal variations in vitrectomy and subretinal surgery, which requires a considerable learning curve, when transiting from human to animal. In turn, however, many essential subretinal implantation techniques in large-eyed animals are directly transferrable to human clinical trial protocols.

A dedicated subchapter on photoreceptor replacement provides insights on preparation of suspension as well as sheet grafts, to subsequently outline the basics of subretinal delivery via both the transscleral and transvitreal route. In closing, a future outlook on vision restoration through retinal cell-based therapeutics is presented.

Keywords

Age-related macular degeneration Retinal pigment epithelium Photoreceptor Transplantation Cell-based therapy Cell replacement Surgery Anesthesia Mouse Rat Rabbit Pig Nonhuman primate Monkey Preclinical study Vitrectomy Immunosuppression 

References

  1. 1.
    Gouras P, Flood MT, Kjeldbye H (1984) Transplantation of cultured human retinal cells to monkey retina. An Acad Bras Cienc 56(4):431–443PubMedPubMedCentralGoogle Scholar
  2. 2.
    Silverman MS, Hughes SE (1989) Transplantation of photoreceptors to light-damaged retina. Invest Ophthalmol Vis Sci 30(8):1684–1690PubMedPubMedCentralGoogle Scholar
  3. 3.
    Machemer R, Steinhorst UH (1993) Retinal separation, retinotomy, and macular relocation: II. A surgical approach for age-related macular degeneration? Graefes Arch Clin Exp Ophthalmol 231(11):635–641CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Das T, del Cerro M, Jalali S, Rao VS, Gullapalli VK, Little C et al (1999) The transplantation of human fetal neuroretinal cells in advanced retinitis pigmentosa patients: results of a long-term safety study. Exp Neurol 157(1):58–68CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Miyadera K (2014) Inherited retinal diseases in dogs: advances in gene/mutation discovery. Dobutsu Iden Ikushu Kenkyu 42(2):79–89PubMedPubMedCentralGoogle Scholar
  6. 6.
    Shirai H, Mandai M, Matsushita K, Kuwahara A, Yonemura S, Nakano T et al (2016) Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc Natl Acad Sci U S A 113(1):E81–E90CrossRefGoogle Scholar
  7. 7.
    Crafoord S, Algvere PV, Kopp ED, Seregard S (2000) Cyclosporine treatment of RPE allografts in the rabbit subretinal space. Acta Ophthalmol Scand 78(2):122–129CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Petrus-Reurer S, Bartuma H, Aronsson M, Westman S, Lanner F, Kvanta A (2018) Subretinal transplantation of human embryonic stem cell derived-retinal pigment epithelial cells into a large-eyed model of geographic atrophy. J Vis Exp 131.  https://doi.org/10.3791/56702
  9. 9.
    Al-Nawaiseh S, Thieltges F, Liu Z, Strack C, Brinken R, Braun N et al (2016) A step by step protocol for subretinal surgery in rabbits. J Vis Exp 115:53927Google Scholar
  10. 10.
    D’Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, LaVail MM et al (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 9(4):645–651CrossRefGoogle Scholar
  11. 11.
    Lawrence JM, Sauve Y, Keegan DJ, Coffey PJ, Hetherington L, Girman S et al (2000) Schwann cell grafting into the retina of the dystrophic RCS rat limits functional deterioration. Royal College of surgeons. Invest Ophthalmol Vis Sci 41(2):518–528PubMedPubMedCentralGoogle Scholar
  12. 12.
    Inoue Y, Iriyama A, Ueno S, Takahashi H, Kondo M, Tamaki Y et al (2007) Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Exp Eye Res 85(2):234–241CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang S, Girman S, Lu B, Bischoff N, Holmes T, Shearer R et al (2008) Long-term vision rescue by human neural progenitors in a rat model of photoreceptor degeneration. Invest Ophthalmol Vis Sci 49(7):3201–3206CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Francis PJ, Wang S, Zhang Y, Brown A, Hwang T, McFarland TJ et al (2009) Subretinal transplantation of forebrain progenitor cells in nonhuman primates: survival and intact retinal function. Invest Ophthalmol Vis Sci 50(7):3425–3431CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Diniz B, Thomas P, Thomas B, Ribeiro R, Hu Y, Brant R et al (2013) Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Invest Ophthalmol Vis Sci 54(7):5087–5096CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhao T, Zhang ZN, Westenskow PD, Todorova D, Hu Z, Lin T et al (2015) Humanized mice reveal differential immunogenicity of cells derived from autologous induced pluripotent stem cells. Cell Stem Cell 17(3):353–359CrossRefGoogle Scholar
  17. 17.
    Chang B, Hawes NL, Hurd RE, Davisson MT, Nusinowitz S, Heckenlively JR (2002) Retinal degeneration mutants in the mouse. Vis Res 42(4):517–525CrossRefGoogle Scholar
  18. 18.
    Aramant RB, Seiler MJ (2002) Retinal transplantation–advantages of intact fetal sheets. Prog Retin Eye Res 21(1):57–73CrossRefGoogle Scholar
  19. 19.
    Remtulla S, Hallett PE (1985) A schematic eye for the mouse, and comparisons with the rat. Vis Res 25(1):21–31CrossRefGoogle Scholar
  20. 20.
    Ross JW, Fernandez de Castro JP, Zhao J, Samuel M, Walters E, Rios C et al (2012) Generation of an inbred miniature pig model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 53(1):501–507CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Stanzel BV, Amaral J, Maminishkis A, Liu Z, Ilmarinen T, Hongisto H et al (2017) Seeing the invisible with intraoperative OCT in surgical vitreoretinal animal research for upcoming clinical applications. Invest Ophthalmol Vis Sci 58:3389CrossRefGoogle Scholar
  22. 22.
    Sugita S, Iwasaki Y, Makabe K, Kamao H, Mandai M, Shiina T et al (2016) Successful transplantation of retinal pigment epithelial cells from MHC homozygote iPSCs in MHC-matched models. Stem Cell Reports. 7(4):635–648CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sugita S, Iwasaki Y, Makabe K, Kimura T, Futagami T, Suegami S et al (2016) Lack of T cell response to iPSC-derived retinal pigment epithelial cells from HLA homozygous donors. Stem Cell Reports. 7(4):619–634CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kamao H, Mandai M, Okamoto S, Sakai N, Suga A, Sugita S et al (2014) Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports. 2(2):205–218CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    McGill TJ, Stoddard J, Renner LM, Messaoudi I, Bharti K, Mitalipov S et al (2018) Allogeneic iPSC-derived RPE cell graft failure following transplantation into the subretinal space in nonhuman primates. Invest Ophthalmol Vis Sci 59(3):1374–1383CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chao JR, Lamba DA, Klesert TR, Torre A, Hoshino A, Taylor RJ et al (2017) Transplantation of human embryonic stem cell-derived retinal cells into the subretinal space of a non-human primate. Transl Vis Sci Technol 6(3):4CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Little CW, Castillo B, DiLoreto DA, Cox C, Wyatt J, del Cerro C et al (1996) Transplantation of human fetal retinal pigment epithelium rescues photoreceptor cells from degeneration in the Royal College of Surgeons rat retina. Invest Ophthalmol Vis Sci 37(1):204–211PubMedPubMedCentralGoogle Scholar
  28. 28.
    Ben M’Barek K, Habeler W, Plancheron A, Jarraya M, Regent F, Terray A et al (2017) Human ESC-derived retinal epithelial cell sheets potentiate rescue of photoreceptor cell loss in rats with retinal degeneration. Sci Transl Med 9(421):eaai7471CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hazim RA, Karumbayaram S, Jiang M, Dimashkie A, Lopes VS, Li D et al (2017) Differentiation of RPE cells from integration-free iPS cells and their cell biological characterization. Stem Cell Res Ther 8(1):217CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Coffey PJ, Girman S, Wang SM, Hetherington L, Keegan DJ, Adamson P et al (2002) Long-term preservation of cortically dependent visual function in RCS rats by transplantation. Nat Neurosci 5(1):53–56CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lu B, Malcuit C, Wang S, Girman S, Francis P, Lemieux L et al (2009) Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells 27(9):2126–2135CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Iraha S, Tu HY, Yamasaki S, Kagawa T, Goto M, Takahashi R et al (2018) Establishment of immunodeficient retinal degeneration model mice and functional maturation of human ESC-derived retinal sheets after transplantation. Stem Cell Reports 10(3):1059–1074CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Stanzel BV, Liu Z, Somboonthanakij S, Wongsawad W, Brinken R, Eter N et al (2014) Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Reports 2(1):64–77CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Plaza Reyes A, Petrus-Reurer S, Antonsson L, Stenfelt S, Bartuma H, Panula S et al (2016) Xeno-free and defined human embryonic stem cell-derived retinal pigment epithelial cells functionally integrate in a large-eyed preclinical model. Stem Cell Reports. 6(1):9–17CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lai CC, Gouras P, Doi K, Tsang SH, Goff SP, Ashton P (2000) Local immunosuppression prolongs survival of RPE xenografts labeled by retroviral gene transfer. Invest Ophthalmol Vis Sci 41(10):3134–3141PubMedPubMedCentralGoogle Scholar
  36. 36.
    Del Priore LV, Ishida O, Johnson EW, Sheng Y, Jacoby DB, Geng L et al (2003) Triple immune suppression increases short-term survival of porcine fetal retinal pigment epithelium xenografts. Invest Ophthalmol Vis Sci 44(9):4044–4053CrossRefGoogle Scholar
  37. 37.
    Mudumba S, Bezwada P, Takanaga H, Hosoi K, Tsuboi T, Ueda K et al (2012) Tolerability and pharmacokinetics of intravitreal sirolimus. J Ocul Pharmacol Ther 28(5):507–514CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Koss MJ, Falabella P, Stefanini FR, Pfister M, Thomas BB, Kashani AH et al (2016) Subretinal implantation of a monolayer of human embryonic stem cell-derived retinal pigment epithelium: a feasibility and safety study in Yucatán minipigs. Graefes Arch Clin Exp Ophthalmol 254(8):1553–1565CrossRefGoogle Scholar
  39. 39.
    Lin B, McLelland BT, Mathur A, Aramant RB, Seiler MJ (2018) Sheets of human retinal progenitor transplants improve vision in rats with severe retinal degeneration. Exp Eye Res 174:13–28CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hu Y, Liu L, Lu B, Zhu D, Ribeiro R, Diniz B et al (2012) A novel approach for subretinal implantation of ultrathin substrates containing stem cell-derived retinal pigment epithelium monolayer. Ophthalmic Res 48(4):186–191CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Aramant RB, Seiler MJ (2002) Transplanted sheets of human retina and retinal pigment epithelium develop normally in nude rats. Exp Eye Res 75(2):115–125CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Maeda T, Lee MJ, Palczewska G, Marsili S, Tesar PJ, Palczewski K et al (2013) Retinal pigmented epithelial cells obtained from human induced pluripotent stem cells possess functional visual cycle enzymes in vitro and in vivo. J Biol Chem 288(48):34484–34493CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Westenskow PD, Kurihara T, Bravo S, Feitelberg D, Sedillo ZA, Aguilar E et al (2015) Performing subretinal injections in rodents to deliver retinal pigment epithelium cells in suspension. J Vis Exp 95:52247Google Scholar
  44. 44.
    Thieltges F, Liu Z, Brinken R, Braun N, Wongsawad W, Somboonthanakij S et al (2016) Localized RPE removal with a novel instrument aided by viscoelastics in rabbits. Transl Vis Sci Technol 5(3):11CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Stanzel BV, Liu Z, Brinken R, Braun N, Holz FG, Eter N (2012) Subretinal delivery of ultrathin rigid-elastic cell carriers using a metallic shooter instrument and biodegradable hydrogel encapsulation. Invest Ophthalmol Vis Sci 53(1):490–500CrossRefGoogle Scholar
  46. 46.
    Los LI, van Luyn MJ, Nieuwenhuis P (1999) Organization of the rabbit vitreous body: lamellae, Cloquet’s channel and a novel structure, the ‘alae canalis Cloqueti. Exp Eye Res 69(3):343–350CrossRefGoogle Scholar
  47. 47.
    Banin E, Hemo Y, Jaouni T, Marks-Ohana D, Stika S, Zheleznykov S et al (2017) Phase I/IIa clinical trial of human embryonic stem cell (hESC)-derived retinal pigmented epithelium (RPE, OpRegen®) transplantation in advanced dry form age-related macular degeneration (AMD): interim results. Invest Ophthalmol Vis Sci 58(8):2320Google Scholar
  48. 48.
    Marmor MF (1990) Control of subretinal fluid: experimental and clinical studies. Eye 4(Pt 2):340–344CrossRefGoogle Scholar
  49. 49.
    Maminishkis A, Amaral J, Charles ST, Bharti K, Miller SS (2016) Surgical tool for subretinal delivery of RPE implants. Invest Ophthalmol Vis Sci 57:12Google Scholar
  50. 50.
    Kamao H, Mandai M, Ohashi W, Hirami Y, Kurimoto Y, Kiryu J et al (2017) Evaluation of the surgical device and procedure for extracellular matrix–scaffold–supported human iPSC–derived retinal pigment epithelium cell sheet transplantation. Invest Ophthalmol Vis Sci 58(1):211–220CrossRefGoogle Scholar
  51. 51.
    Wilson DJ, Neuringer M, Stoddard J, Renner LM, Bailey S, Lauer A et al (2017) Subretinal cell-based therapy: an analysis of surgical variables to increase cell survival. Retina 37(11):2162–2166CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Seiler MJ, Aramant RB, Thomas BB, Peng Q, Sadda SR, Keirstead HS (2010) Visual restoration and transplant connectivity in degenerate rats implanted with retinal progenitor sheets. Eur J Neurosci 31(3):508–520CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Mandai M, Fujii M, Hashiguchi T, Sunagawa GA, Ito SI, Sun J et al (2017) iPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice. Stem Cell Reports. 8(1):69–83CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Eberle D, Kurth T, Santos-Ferreira T, Wilson J, Corbeil D, Ader M (2012) Outer segment formation of transplanted photoreceptor precursor cells. PLoS One 7(9):e46305CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Singh MS, Charbel Issa P, Butler R, Martin C, Lipinski DM, Sekaran S et al (2013) Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation. Proc Natl Acad Sci U S A 110(3):1101–1106CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Silverman MS, Hughes SE, Valentino TL, Liu Y (1992) Photoreceptor transplantation: anatomic, electrophysiologic, and behavioral evidence for the functional reconstruction of retinas lacking photoreceptors. Exp Neurol 115(1):87–94CrossRefGoogle Scholar
  57. 57.
    Aramant RB, Seiler MJ, Ball SL (1999) Successful cotransplantation of intact sheets of fetal retina with retinal pigment epithelium. Invest Ophthalmol Vis Sci 40(7):1557–1564PubMedGoogle Scholar
  58. 58.
    Woch G, Aramant RB, Seiler MJ, Sagdullaev BT, McCall MA (2001) Retinal transplants restore visually evoked responses in rats with photoreceptor degeneration. Invest Ophthalmol Vis Sci 42(7):1669–1676PubMedGoogle Scholar
  59. 59.
    Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ et al (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385(9967):509–516CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T et al (2017) Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med 376(11):1038–1046CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH, Ahmado A et al (2018) Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol 36(4):328–337CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Dang W et al (2018) A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med 10(435):eaao4097CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Boris Stanzel
    • 1
    • 2
    • 3
    Email author
  • Marius Ader
    • 4
  • Zengping Liu
    • 3
  • Juan Amaral
    • 5
  • Luis Ignacio Reyes Aguirre
    • 4
  • Annekatrin Rickmann
    • 1
  • Veluchamy A. Barathi
    • 6
  • Gavin S. W. Tan
    • 6
  • Andrea Degreif
    • 2
  • Sami Al-Nawaiseh
    • 1
  • Peter Szurman
    • 1
  1. 1.Eye Clinic Sulzbach, Knappschaft HospitalSulzbachGermany
  2. 2.Fraunhofer Institute for Biomedical EngineeringSulzbachGermany
  3. 3.Department of OphthalmologyNational University of SingaporeSingaporeSingapore
  4. 4.DFG Center for Regenerative Therapies Dresden (CRTD)Technische Universität DresdenDresdenGermany
  5. 5.Stem Cell and Translational Research UnitNational Eye Institute, National Institutes of HealthBethesdaUSA
  6. 6.Singapore Eye Research InstituteSingaporeSingapore

Personalised recommendations