Utility of Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium for an In Vitro Model of Proliferative Vitreoretinopathy
- 543 Downloads
Abstract
The advent of stem cell technology, including the technology to induce pluripotency in somatic cells, and direct differentiation of stem cells into specific somatic cell types, has created an exciting new field of scientific research. Much of the work with pluripotent stem (PS) cells has been focused on the exploration and exploitation of their potential as cells/tissue replacement therapies for personalized medicine. However, PS and stem cell-derived somatic cells are also proving to be valuable tools to study disease pathology and tissue-specific responses to injury. High-throughput drug screening assays using tissue-specific injury models have the potential to identify specific and effective treatments that will promote wound healing. Retinal pigment epithelium (RPE) derived from induced pluripotent stem cells (iPS-RPE) are well characterized cells that exhibit the phenotype and functions of in vivo RPE. In addition to their role as a source of cells to replace damaged or diseased RPE, iPS-RPE provide a robust platform for in vitro drug screening to identify novel therapeutics to promote healing and repair of ocular tissues after injury. Proliferative vitreoretinopathy (PVR) is an abnormal wound healing process that occurs after retinal tears or detachments. In this chapter, the role of iPS-RPE in the development of an in vitro model of PVR is described. Comprehensive analyses of the iPS-RPE response to injury suggests that these cells provide a physiologically relevant tool to investigate the cellular mechanisms of the three phases of PVR pathology: migration, proliferation, and contraction. This in vitro model will provide valuable information regarding cellular wound healing responses specific to RPE and enable the identification of effective therapeutics.
Keywords
Pluripotent stem cells Induced pluripotent stem cells Retinal pigment epithelium Retinal pigment epithelium derived from induced pluripotent stem cells Proliferative vitreoretinopathy Wound healingReferences
- 1.Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:435–462CrossRefGoogle Scholar
- 2.Weissman IL, Anderson DJ, Gage F (2001) Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 17:387–403CrossRefGoogle Scholar
- 3.Gurdon JB, Melton DA (2008) Nuclear reprogramming in cells. Science 322:1811–1815CrossRefGoogle Scholar
- 4.Liao SY, Tse HF (2013) Multipotent (adult) and pluripotent stem cells for heart regeneration: what are the pros and cons? Stem Cell Res Ther 4:151CrossRefPubMedPubMedCentralGoogle Scholar
- 5.Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156CrossRefGoogle Scholar
- 6.Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638CrossRefPubMedPubMedCentralGoogle Scholar
- 7.Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125CrossRefGoogle Scholar
- 8.Ko HC, Gelb BD (2014) Concise review: drug discovery in the age of the induced pluripotent stem cell. Stem Cells Transl Med 3:500–509CrossRefPubMedPubMedCentralGoogle Scholar
- 9.Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886CrossRefPubMedPubMedCentralGoogle Scholar
- 10.Onder TT, Daley GQ (2012) New lessons learned from disease modeling with induced pluripotent stem cells. Curr Opin Genet Dev 22:500–508CrossRefPubMedPubMedCentralGoogle Scholar
- 11.Jang J, Yoo JE, Lee JA, Lee DR, Kim JY, Huh YJ, Kim DS, Park CY, Hwang DY, Kim HS, Kang HC, Kim DW (2012) Disease-specific induced pluripotent stem cells: a platform for human disease modeling and drug discovery. Exp Mol Med 44:202–213CrossRefPubMedPubMedCentralGoogle Scholar
- 12.Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317CrossRefPubMedPubMedCentralGoogle Scholar
- 13.Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefGoogle Scholar
- 14.Hyun I (2010) The bioethics of stem cell research and therapy. J Clin Invest 120:71–75CrossRefPubMedPubMedCentralGoogle Scholar
- 15.Kaini RR, Shen-Gunther J, Cleland JM, Greene WA, Wang HC (2016) Recombinant xeno-free vitronectin supports self-renewal and pluripotency in protein-induced pluripotent stem cells. Tissue Eng Part C Methods 22:85. https://doi.org/10.1089/ten.TEC.2015.0180CrossRefPubMedPubMedCentralGoogle Scholar
- 16.Condic ML, Rao M (2010) Alternative sources of pluripotent stem cells: ethical and scientific issues revisited. Stem Cells Dev 19:1121–1129CrossRefPubMedPubMedCentralGoogle Scholar
- 17.Cramer AO, MacLaren RE (2013) Translating induced pluripotent stem cells from bench to bedside: application to retinal diseases. Curr Gene Ther 13:139–151CrossRefPubMedPubMedCentralGoogle Scholar
- 18.Kim K, Zhao R, Doi A, Ng K, Unternaehrer J, Cahan P, Huo H, Loh YH, Aryee MJ, Lensch MW, Li H, Collins JJ, Feinberg AP, Daley GQ (2011) Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat Biotechnol 29:1117–1119CrossRefPubMedPubMedCentralGoogle Scholar
- 19.Oliveira PH, da Silva CL, Cabral JM (2014) Concise review: genomic instability in human stem cells: current status and future challenges. Stem Cells 32:2824–2832CrossRefGoogle Scholar
- 20.Peterson SE, Loring JF (2014) Genomic instability in pluripotent stem cells: implications for clinical applications. J Biol Chem 289:4578–4584CrossRefPubMedPubMedCentralGoogle Scholar
- 21.Toivonen S, Ojala M, Hyysalo A, Ilmarinen T, Rajala K, Pekkanen-Mattila M, Aanismaa R, Lundin K, Palgi J, Weltner J, Trokovic R, Silvennoinen O, Skottman H, Narkilahti S, Aalto-Setala K, Otonkoski T (2013) Comparative analysis of targeted differentiation of human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells reveals variability associated with incomplete transgene silencing in retrovirally derived hiPSC lines. Stem Cells Transl Med 2:83–93CrossRefPubMedPubMedCentralGoogle Scholar
- 22.Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920CrossRefPubMedPubMedCentralGoogle Scholar
- 23.Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770CrossRefPubMedPubMedCentralGoogle Scholar
- 24.Ye L, Chang JC, Lin C, Qi Z, Yu J, Kan YW (2010) Generation of induced pluripotent stem cells using site-specific integration with phage integrase. Proc Natl Acad Sci U S A 107:19467–19472CrossRefPubMedPubMedCentralGoogle Scholar
- 25.Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801CrossRefPubMedPubMedCentralGoogle Scholar
- 26.Zhou W, Freed CR (2009) Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27:2667–2674CrossRefPubMedPubMedCentralGoogle Scholar
- 27.Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362CrossRefPubMedPubMedCentralGoogle Scholar
- 28.Narsinh KH, Jia F, Robbins RC, Kay MA, Longaker MT, Wu JC (2011) Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat Protoc 6:78–88CrossRefPubMedPubMedCentralGoogle Scholar
- 29.Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630CrossRefPubMedPubMedCentralGoogle Scholar
- 30.Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476CrossRefPubMedPubMedCentralGoogle Scholar
- 31.Brouwer M, Zhou H, Nadif KN (2016) Choices for induction of pluripotency: recent developments in human induced pluripotent stem cell reprogramming strategies. Stem Cell Rev 12:54–72CrossRefGoogle Scholar
- 32.Schlaeger TM, Daheron L, Brickler TR, Entwisle S, Chan K, Cianci A, DeVine A, Ettenger A, Fitzgerald K, Godfrey M, Gupta D, McPherson J, Malwadkar P, Gupta M, Bell B, Doi A, Jung N, Li X, Lynes MS, Brookes E, Cherry AB, Demirbas D, Tsankov AM, Zon LI, Rubin LL, Feinberg AP, Meissner A, Cowan CA, Daley GQ (2015) A comparison of non-integrating reprogramming methods. Nat Biotechnol 33:58–63CrossRefPubMedPubMedCentralGoogle Scholar
- 33.Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, Clegg DO (2009) Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells 27:2427–2434CrossRefGoogle Scholar
- 34.Carr AJ, Vugler AA, Hikita ST, Lawrence JM, Gias C, Chen LL, Buchholz DE, Ahmado A, Semo M, Smart MJ, Hasan S, da Cruz L, Johnson LV, Clegg DO, Coffey PJ (2009) Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One 4:e8152CrossRefPubMedPubMedCentralGoogle Scholar
- 35.Muniz A, Ramesh KR, Greene WA, Choi JH, Wang HC (2015) Deriving retinal pigment epithelium (RPE) from induced pluripotent stem (iPS) cells by different sizes of embryoid bodies. J Vis Exp. https://doi.org/10.3791/52262
- 36.Kokkinaki M, Sahibzada N, Golestaneh N (2011) Human induced pluripotent stem-derived retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression pattern similar to native RPE. Stem Cells 29:825–835CrossRefPubMedPubMedCentralGoogle Scholar
- 37.Muniz A, Greene WA, Plamper ML, Choi JH, Johnson AJ, Tsin AT, Wang HC (2014) Retinoid uptake, processing, and secretion in human iPS-RPE support the visual cycle. Invest Ophthalmol Vis Sci 55:198–209CrossRefPubMedPubMedCentralGoogle Scholar
- 38.Wang HC, Greene WA, Kaini RR, Shen-Gunther J, Chen HI, Cai H, Wang Y (2014) Profiling the microRNA expression in human iPS and iPS-derived retinal pigment epithelium. Cancer Inform 13:25–35PubMedPubMedCentralGoogle Scholar
- 39.Greene WA, Muniz A, Plamper ML, Kaini RR, Wang HC (2014) MicroRNA expression profiles of human iPS cells, retinal pigment epithelium derived from iPS, and fetal retinal pigment epithelium. J Vis Exp. https://doi.org/10.3791/51589:e51589
- 40.Li Y, Tsai YT, Hsu CW, Erol D, Yang J, Wu WH, Davis RJ, Egli D, Tsang SH (2012) Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Mol Med 18:1312–1319CrossRefPubMedPubMedCentralGoogle Scholar
- 41.Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, Hubschman JP, Davis JL, Heilwell G, Spirn M, Maguire J, Gay R, Bateman J, Ostrick RM, Morris D, Vincent M, Anglade E, Del Priore LV, Lanza R (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385:509–516CrossRefPubMedPubMedCentralGoogle Scholar
- 42.Song WK, Park KM, Kim HJ, Lee JH, Choi J, Chong SY, Shim SH, Del Priore LV, Lanza R (2015) Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Rep 4:860–872CrossRefGoogle Scholar
- 43.Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872CrossRefPubMedPubMedCentralGoogle Scholar
- 44.Wang NK, Tosi J, Kasanuki JM, Chou CL, Kong J, Parmalee N, Wert KJ, Allikmets R, Lai CC, Chien CL, Nagasaki T, Lin CS, Tsang SH (2010) Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa. Transplantation 89:911–919CrossRefPubMedPubMedCentralGoogle Scholar
- 45.Nguyen HV, Li Y, Tsang SH (2015) Patient-specific iPSC-derived RPE for modeling of retinal diseases. J Clin Med 4:567–578CrossRefPubMedPubMedCentralGoogle Scholar
- 46.Singh R, Shen W, Kuai D, Martin JM, Guo X, Smith MA, Perez ET, Phillips MJ, Simonett JM, Wallace KA, Verhoeven AD, Capowski EE, Zhang X, Yin Y, Halbach PJ, Fishman GA, Wright LS, Pattnaik BR, Gamm DM (2013) iPS cell modeling of best disease: insights into the pathophysiology of an inherited macular degeneration. Hum Mol Genet 22:593–607CrossRefGoogle Scholar
- 47.Yang J, Li Y, Chan L, Tsai YT, Wu WH, Nguyen HV, Hsu CW, Li X, Brown LM, Egli D, Sparrow JR, Tsang SH (2014) Validation of genome-wide association study (GWAS)-identified disease risk alleles with patient-specific stem cell lines. Hum Mol Genet 23:3445–3455CrossRefPubMedPubMedCentralGoogle Scholar
- 48.Cereso N, Pequignot MO, Robert L, Becker F, De Luca V, Nabholz N, Rigau V, De Vos J, Hamel CP, Kalatzis V (2014) Proof of concept for AAV2/5-mediated gene therapy in iPSC-derived retinal pigment epithelium of a choroideremia patient. Mol Ther Methods Clin Dev 1:14011CrossRefPubMedPubMedCentralGoogle Scholar
- 49.Polinati PP, Ilmarinen T, Trokovic R, Hyotylainen T, Otonkoski T, Suomalainen A, Skottman H, Tyni T (2015) Patient-specific induced pluripotent stem cell-derived RPE cells: understanding the pathogenesis of retinopathy in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Invest Ophthalmol Vis Sci 56:3371–3382CrossRefPubMedPubMedCentralGoogle Scholar
- 50.Song MJ, Bharti K (2016) Looking into the future: using induced pluripotent stem cells to build two and three dimensional ocular tissue for cell therapy and disease modeling. Brain Res 1638:2–14CrossRefGoogle Scholar
- 51.Rehan S, Javaid Z, Al-Bermani A (2015) Unilateral subretinal fibrosis and uveitis syndrome. Scott Med J 60:e4–e6CrossRefGoogle Scholar
- 52.Lobler M, Buss D, Kastner C, Mostertz J, Homuth G, Ernst M, Guthoff R, Wree A, Stahnke T, Fuellen G, Voelker U, Schmitz KP (2013) Ocular fibroblast types differ in their mRNA profiles—implications for fibrosis prevention after aqueous shunt implantation. Mol Vis 19:1321–1331PubMedPubMedCentralGoogle Scholar
- 53.Chen KJ, Sun MH, Lai CC (2012) Massive submacular fibrosis after ocular blunt injury. Arch Ophthalmol 130:1126CrossRefGoogle Scholar
- 54.Bianchi E, Ripandelli G, Feher J, Plateroti AM, Plateroti R, Kovacs I, Plateroti P, Taurone S, Artico M (2015) Occlusion of retinal capillaries caused by glial cell proliferation in chronic ocular inflammation. Folia Morphol (Warsz) 74:33–41CrossRefGoogle Scholar
- 55.Herschler J (1977) Trabecular damage due to blunt anterior segment injury and its relationship to traumatic glaucoma. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol 83:239–248PubMedGoogle Scholar
- 56.Aylward GW, Lawson J, McCarry B, Lee JP, Fells P (1992) The surgical treatment of traumatic Brown syndrome. J Pediatr Ophthalmol Strabismus 29:276–283PubMedGoogle Scholar
- 57.Garcia GH, Goldberg RA, Shorr N (1998) The transcaruncular approach in repair of orbital fractures: a retrospective study. J Craniomaxillofac Trauma 4:7–12PubMedGoogle Scholar
- 58.Dubois L, Steenen SA, Gooris PJ, Bos RR, Becking AG (2016) Controversies in orbital reconstruction-III. Biomaterials for orbital reconstruction: a review with clinical recommendations. Int J Oral Maxillofac Surg 45:41–50CrossRefGoogle Scholar
- 59.Dubois L, Steenen SA, Gooris PJ, Mourits MP, Becking AG (2015) Controversies in orbital reconstruction—II. Timing of post-traumatic orbital reconstruction: a systematic review. Int J Oral Maxillofac Surg 44:433–440CrossRefGoogle Scholar
- 60.Dubois L, Steenen SA, Gooris PJ, Mourits MP, Becking AG (2015) Controversies in orbital reconstruction—I. Defect-driven orbital reconstruction: a systematic review. Int J Oral Maxillofac Surg 44:308–315CrossRefGoogle Scholar
- 61.Mendes S, Campos A, Beselga D, Campos J, Neves A (2014) Traumatic maculopathy 6 months after injury: a clinical case report. Case Rep Ophthalmol 5:78–82CrossRefPubMedPubMedCentralGoogle Scholar
- 62.Campos J, Campos A, Beselga D, Mendes S, Neves A, Sousa JP (2013) Punctate inner choroidopathy: a clinical case report. Case Rep Ophthalmol 4:155–159CrossRefPubMedPubMedCentralGoogle Scholar
- 63.Pastor JC (1998) Proliferative vitreoretinopathy: an overview. Surv Ophthalmol 43:3–18CrossRefGoogle Scholar
- 64.Kantelip B, Bacin F (1985) Intraocular fibrosis after perforating injury of the posterior segment. Experimental study. J Fr Ophtalmol 8:245–253PubMedGoogle Scholar
- 65.Cockerham GC, Rice TA, Hewes EH, Cockerham KP, Lemke S, Wang G, Lin RC, Glynn-Milley C, Zumhagen L (2011) Closed-eye ocular injuries in the Iraq and Afghanistan wars. N Engl J Med 364:2172–2173CrossRefGoogle Scholar
- 66.Moysidis SN, Thanos A, Vavvas DG (2012) Mechanisms of inflammation in proliferative vitreoretinopathy: from bench to bedside. Mediat Inflamm 2012:815937CrossRefGoogle Scholar
- 67.Weichel ED, Colyer MH (2008) Combat ocular trauma and systemic injury. Curr Opin Ophthalmol 19:519–525CrossRefGoogle Scholar
- 68.Pastor JC, de la Rua ER, Martin F (2002) Proliferative vitreoretinopathy: risk factors and pathobiology. Prog Retin Eye Res 21:127–144CrossRefGoogle Scholar
- 69.Snead DR, James S, Snead MP (2008) Pathological changes in the vitreoretinal junction 1: epiretinal membrane formation. Eye (Lond) 22:1310–1317CrossRefGoogle Scholar
- 70.Charteris DG, Sethi CS, Lewis GP, Fisher SK (2002) Proliferative vitreoretinopathy-developments in adjunctive treatment and retinal pathology. Eye (Lond) 16:369–374CrossRefGoogle Scholar
- 71.Erakgun T, Egrilmez S (2009) Surgical outcomes of transconjunctival sutureless 23-gauge vitrectomy with silicone oil injection. Indian J Ophthalmol 57:105–109CrossRefPubMedPubMedCentralGoogle Scholar
- 72.Shah CP, Ho AC, Regillo CD, Fineman MS, Vander JF, Brown GC (2008) Short-term outcomes of 25-gauge vitrectomy with silicone oil for repair of complicated retinal detachment. Retina 28:723–728CrossRefPubMedPubMedCentralGoogle Scholar
- 73.Riemann CD, Miller DM, Foster RE, Petersen MR (2007) Outcomes of transconjunctival sutureless 25-gauge vitrectomy with silicone oil infusion. Retina 27:296–303CrossRefGoogle Scholar
- 74.Schaal S, Sherman MP, Barr CC, Kaplan HJ (2011) Primary retinal detachment repair: comparison of 1-year outcomes of four surgical techniques. Retina 31:1500–1504CrossRefGoogle Scholar
- 75.Yao Y, Jiang L, Wang ZJ, Zhang MN (2006) Scleral buckling procedures for longstanding or chronic rhegmatogenous retinal detachment with subretinal proliferation. Ophthalmology 113:821–825CrossRefGoogle Scholar
- 76.Storey P, Alshareef R, Khuthaila M, London N, Leiby B, DeCroos C, Kaiser R, Wills PVRSG (2014) Pars plana vitrectomy and scleral buckle versus pars plana vitrectomy alone for patients with rhegmatogenous retinal detachment at high risk for proliferative vitreoretinopathy. Retina 34:1945–1951CrossRefGoogle Scholar
- 77.Quiram PA, Gonzales CR, Hu W, Gupta A, Yoshizumi MO, Kreiger AE, Schwartz SD (2006) Outcomes of vitrectomy with inferior retinectomy in patients with recurrent rhegmatogenous retinal detachments and proliferative vitreoretinopathy. Ophthalmology 113:2041–2047CrossRefGoogle Scholar
- 78.Tsui I, Schubert HD (2009) Retinotomy and silicone oil for detachments complicated by anterior inferior proliferative vitreoretinopathy. Br J Ophthalmol 93:1228–1233CrossRefGoogle Scholar
- 79.Tan HS, Mura M, Oberstein SY, de Smet MD (2010) Primary retinectomy in proliferative vitreoretinopathy. Am J Ophthalmol 149:447–452CrossRefGoogle Scholar
- 80.Joussen AM, Rizzo S, Kirchhof B, Schrage N, Li X, Lente C, Hilgers RD, Group HSOS (2011) Heavy silicone oil versus standard silicone oil in as vitreous tamponade in inferior PVR (HSO Study): interim analysis. Acta Ophthalmol 89:e483–e489CrossRefGoogle Scholar
- 81.Boscia F, Furino C, Recchimurzo N, Besozzi G, Sborgia G, Sborgia C (2008) Oxane HD vs silicone oil and scleral buckle in retinal detachment with proliferative vitreoretinopathy and inferior retinal breaks. Graefes Arch Clin Exp Ophthalmol 246:943–948CrossRefGoogle Scholar
- 82.Kralinger MT, Stolba U, Velikay M, Egger S, Binder S, Wedrich A, Haas A, Parel JM, Kieselbach GF (2010) Safety and feasibility of a novel intravitreal tamponade using a silicone oil/acetyl-salicylic acid suspension for proliferative vitreoretinopathy: first results of the Austrian Clinical Multicenter Study. Graefes Arch Clin Exp Ophthalmol 248:1193–1198CrossRefGoogle Scholar
- 83.Ahmadieh H, Feghhi M, Tabatabaei H, Shoeibi N, Ramezani A, Mohebbi MR (2008) Triamcinolone acetonide in silicone-filled eyes as adjunctive treatment for proliferative vitreoretinopathy: a randomized clinical trial. Ophthalmology 115:1938–1943CrossRefGoogle Scholar
- 84.Yamakiri K, Sakamoto T, Noda Y, Nakahara M, Ogino N, Kubota T, Yokoyama M, Furukawa M, Ishibashi T (2008) One-year results of a multicenter controlled clinical trial of triamcinolone in pars plana vitrectomy. Graefes Arch Clin Exp Ophthalmol 246:959–966CrossRefPubMedPubMedCentralGoogle Scholar
- 85.Chen W, Chen H, Hou P, Fok A, Hu Y, Lam DS (2011) Midterm results of low-dose intravitreal triamcinolone as adjunctive treatment for proliferative vitreoretinopathy. Retina 31:1137–1142CrossRefGoogle Scholar
- 86.Dehghan MH, Ahmadieh H, Soheilian M, Azarmina M, Moradian S, Ramezani AR, Tavallal A, Naghibozakerin J (2010) Effect of oral prednisolone on visual outcomes and complications after scleral buckling. Eur J Ophthalmol 20:419–423CrossRefGoogle Scholar
- 87.Reibaldi M, Russo A, Longo A, Bonfiglio V, Uva MG, Gagliano C, Toro MD, Avitabile T (2013) Rhegmatogenous retinal detachment with a high risk of proliferative vitreoretinopathy treated with episcleral surgery and an intravitreal dexamethasone 0.7-mg implant. Case Rep Ophthalmol 4:79–83CrossRefPubMedPubMedCentralGoogle Scholar
- 88.Banerjee PJ, Bunce C, Charteris DG (2013) Ozurdex (a slow-release dexamethasone implant) in proliferative vitreoretinopathy: study protocol for a randomised controlled trial. Trials 14:358CrossRefPubMedPubMedCentralGoogle Scholar
- 89.Kumar A, Nainiwal S, Choudhary I, Tewari HK, Verma LK (2002) Role of daunorubicin in inhibiting proliferative vitreoretinopathy after retinal detachment surgery. Clin Exp Ophthalmol 30:348–351CrossRefGoogle Scholar
- 90.Wiedemann P, Hilgers RD, Bauer P, Heimann K (1998) Adjunctive daunorubicin in the treatment of proliferative vitreoretinopathy: results of a multicenter clinical trial. Daunomycin Study Group. Am J Ophthalmol 126:550–559CrossRefPubMedPubMedCentralGoogle Scholar
- 91.Asaria RH, Kon CH, Bunce C, Charteris DG, Wong D, Khaw PT, Aylward GW (2001) Adjuvant 5-fluorouracil and heparin prevents proliferative vitreoretinopathy: results from a randomized, double-blind, controlled clinical trial. Ophthalmology 108:1179–1183CrossRefPubMedPubMedCentralGoogle Scholar
- 92.Charteris DG, Aylward GW, Wong D, Groenewald C, Asaria RH, Bunce C, Group PVRS (2004) A randomized controlled trial of combined 5-fluorouracil and low-molecular-weight heparin in management of established proliferative vitreoretinopathy. Ophthalmology 111:2240–2245CrossRefPubMedPubMedCentralGoogle Scholar
- 93.Wickham L, Bunce C, Wong D, McGurn D, Charteris DG (2007) Randomized controlled trial of combined 5-fluorouracil and low-molecular-weight heparin in the management of unselected rhegmatogenous retinal detachments undergoing primary vitrectomy. Ophthalmology 114:698–704CrossRefPubMedPubMedCentralGoogle Scholar
- 94.Fekrat S, de Juan E Jr, Campochiaro PA (1995) The effect of oral 13-cis-retinoic acid on retinal redetachment after surgical repair in eyes with proliferative vitreoretinopathy. Ophthalmology 102:412–418CrossRefPubMedPubMedCentralGoogle Scholar
- 95.Chang YC, Hu DN, Wu WC (2008) Effect of oral 13-cis-retinoic acid treatment on postoperative clinical outcome of eyes with proliferative vitreoretinopathy. Am J Ophthalmol 146:440–446CrossRefPubMedPubMedCentralGoogle Scholar
- 96.Hsu J, Khan MA, Shieh WS, Chiang A, Maguire JI, Park CH, Garg SJ, Ho AC, Kaiser RS (2016) Effect of serial intrasilicone oil bevacizumab injections in eyes with recurrent proliferative vitreoretinopathy retinal detachment. Am J Ophthalmol 161:65–70.e62CrossRefPubMedPubMedCentralGoogle Scholar
- 97.Mandava N, Blackburn P, Paul DB, Wilson MW, Read SB, Alspaugh E, Tritz R, Barber JR, Robbins JM, Kruse CA (2002) Ribozyme to proliferating cell nuclear antigen to treat proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 43:3338–3348PubMedPubMedCentralGoogle Scholar
- 98.Schiff WM, Hwang JC, Ober MD, Olson JL, Dhrami-Gavazi E, Barile GR, Chang S, Mandava N (2007) Safety and efficacy assessment of chimeric ribozyme to proliferating cell nuclear antigen to prevent recurrence of proliferative vitreoretinopathy. Arch Ophthalmol 125:1161–1167CrossRefPubMedPubMedCentralGoogle Scholar
- 99.Khan MA, Brady CJ, Kaiser RS (2015) Clinical management of proliferative vitreoretinopathy: an update. Retina 35:165–175CrossRefPubMedPubMedCentralGoogle Scholar
- 100.Charteris DG (1995) Proliferative vitreoretinopathy: pathobiology, surgical management, and adjunctive treatment. Br J Ophthalmol 79:953–960CrossRefPubMedPubMedCentralGoogle Scholar
- 101.Garweg JG, Tappeiner C, Halberstadt M (2013) Pathophysiology of proliferative vitreoretinopathy in retinal detachment. Surv Ophthalmol 58:321–329CrossRefGoogle Scholar
- 102.Pennock S, Haddock LJ, Eliott D, Mukai S, Kazlauskas A (2014) Is neutralizing vitreal growth factors a viable strategy to prevent proliferative vitreoretinopathy? Prog Retin Eye Res 40:16–34CrossRefGoogle Scholar
- 103.Nagasaki H, Shinagawa K, Mochizuki M (1998) Risk factors for proliferative vitreoretinopathy. Prog Retin Eye Res 17:77–98CrossRefGoogle Scholar
- 104.Pastor JC, Rojas J, Pastor-Idoate S, Di Lauro S, Gonzalez-Buendia L, Delgado-Tirado S (2015) Proliferative vitreoretinopathy: a new concept of disease pathogenesis and practical consequences. Prog Retin Eye Res 51:125. https://doi.org/10.1016/j.preteyeres.2015.07.005CrossRefPubMedPubMedCentralGoogle Scholar
- 105.Laqua H, Machemer R (1975) Glial cell proliferation in retinal detachment (massive periretinal proliferation). Am J Ophthalmol 80:602–618CrossRefPubMedPubMedCentralGoogle Scholar
- 106.Machemer R, Laqua H (1975) Pigment epithelium proliferation in retinal detachment (massive periretinal proliferation). Am J Ophthalmol 80:1–23CrossRefGoogle Scholar
- 107.Laqua H (1975) Massive periretinal proliferation (MPP) IV. Pre- and subretinal proliferation of glial tissue in experimental retinal detachment. Mod Probl Ophthalmol 15:235–245PubMedGoogle Scholar
- 108.Baudouin C, Hofman P, Brignole F, Bayle J, Loubiere R, Gastaud P (1991) Immunocytology of cellular components in vitreous and subretinal fluid from patients with proliferative vitreoretinopathy. Ophthalmologica 203:38–46CrossRefGoogle Scholar
- 109.Wiedemann P, Weller M (1988) The pathophysiology of proliferative vitreoretinopathy. Acta Ophthalmol Suppl 189:3–15PubMedGoogle Scholar
- 110.Charteris DG, Hiscott P, Grierson I, Lightman SL (1992) Proliferative vitreoretinopathy. Lymphocytes in epiretinal membranes. Ophthalmology 99:1364–1367CrossRefGoogle Scholar
- 111.Charteris DG, Hiscott P, Robey HL, Gregor ZJ, Lightman SL, Grierson I (1993) Inflammatory cells in proliferative vitreoretinopathy subretinal membranes. Ophthalmology 100:43–46CrossRefGoogle Scholar
- 112.Morescalchi F, Duse S, Gambicorti E, Romano MR, Costagliola C, Semeraro F (2013) Proliferative vitreoretinopathy after eye injuries: an overexpression of growth factors and cytokines leading to a retinal keloid. Mediat Inflamm 2013:269787CrossRefGoogle Scholar
- 113.Casaroli-Marano RP, Pagan R, Vilaro S (1999) Epithelial-mesenchymal transition in proliferative vitreoretinopathy: intermediate filament protein expression in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 40:2062–2072PubMedGoogle Scholar
- 114.Wu WC, Kao YH, Hu DN (2000) Relationship between outcome of proliferative vitreoretinopathy and results of tissue culture of excised preretinal membranes. Kaohsiung J Med Sci 16:614–619PubMedGoogle Scholar
- 115.Anderson DH, Stern WH, Fisher SK, Erickson PA, Borgula GA (1983) Retinal detachment in the cat: the pigment epithelial-photoreceptor interface. Invest Ophthalmol Vis Sci 24:906–926PubMedGoogle Scholar
- 116.Lee SC, Kwon OW, Seong GJ, Kim SH, Ahn JE, Kay ED (2001) Epitheliomesenchymal transdifferentiation of cultured RPE cells. Ophthalmic Res 33:80–86CrossRefGoogle Scholar
- 117.Stocks SZ, Taylor SM, Shiels IA (2001) Transforming growth factor-beta1 induces alpha-smooth muscle actin expression and fibronectin synthesis in cultured human retinal pigment epithelial cells. Clin Exp Ophthalmol 29:33–37CrossRefGoogle Scholar
- 118.Glaser BM, Cardin A, Biscoe B (1987) Proliferative vitreoretinopathy. The mechanism of development of vitreoretinal traction. Ophthalmology 94:327–332CrossRefGoogle Scholar
- 119.Hiscott P, Sheridan C, Magee RM, Grierson I (1999) Matrix and the retinal pigment epithelium in proliferative retinal disease. Prog Retin Eye Res 18:167–190CrossRefGoogle Scholar
- 120.Agrawal RN, He S, Spee C, Cui JZ, Ryan SJ, Hinton DR (2007) In vivo models of proliferative vitreoretinopathy. Nat Protoc 2:67–77CrossRefGoogle Scholar
- 121.Chiba C (2014) The retinal pigment epithelium: an important player of retinal disorders and regeneration. Exp Eye Res 123:107–114CrossRefPubMedPubMedCentralGoogle Scholar
- 122.Guerin CJ, Hu L, Scicli G, Scicli AG (2001) Transforming growth factor beta in experimentally detached retina and periretinal membranes. Exp Eye Res 73:753–764CrossRefGoogle Scholar
- 123.Hinton DR, He S, Jin ML, Barron E, Ryan SJ (2002) Novel growth factors involved in the pathogenesis of proliferative vitreoretinopathy. Eye (Lond) 16:422–428CrossRefGoogle Scholar
- 124.Elner SG, Elner VM, Jaffe GJ, Stuart A, Kunkel SL, Strieter RM (1995) Cytokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. Curr Eye Res 14:1045–1053CrossRefGoogle Scholar
- 125.Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122:103–111CrossRefGoogle Scholar
- 126.Desmouliere A, Gabbiani G (1995) Myofibroblast differentiation during fibrosis. Exp Nephrol 3:134–139PubMedGoogle Scholar
- 127.Desmouliere A (1995) Factors influencing myofibroblast differentiation during wound healing and fibrosis. Cell Biol Int 19:471–476CrossRefGoogle Scholar
- 128.Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363CrossRefGoogle Scholar
- 129.Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200:500–503CrossRefGoogle Scholar
- 130.Baudouin C, Fredj-Reygrobellet D, Brignole F, Negre F, Lapalus P, Gastaud P (1993) Growth factors in vitreous and subretinal fluid cells from patients with proliferative vitreoretinopathy. Ophthalmic Res 25:52–59CrossRefGoogle Scholar
- 131.Cassidy L, Barry P, Shaw C, Duffy J, Kennedy S (1998) Platelet derived growth factor and fibroblast growth factor basic levels in the vitreous of patients with vitreoretinal disorders. Br J Ophthalmol 82:181–185CrossRefPubMedPubMedCentralGoogle Scholar
- 132.Lei H, Hovland P, Velez G, Haran A, Gilbertson D, Hirose T, Kazlauskas A (2007) A potential role for PDGF-C in experimental and clinical proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 48:2335–2342CrossRefGoogle Scholar
- 133.Pennock S, Rheaume MA, Mukai S, Kazlauskas A (2011) A novel strategy to develop therapeutic approaches to prevent proliferative vitreoretinopathy. Am J Pathol 179:2931–2940CrossRefPubMedPubMedCentralGoogle Scholar
- 134.Cui J, Lei H, Samad A, Basavanthappa S, Maberley D, Matsubara J, Kazlauskas A (2009) PDGF receptors are activated in human epiretinal membranes. Exp Eye Res 88:438–444CrossRefGoogle Scholar
- 135.Lee H, O’Meara SJ, O’Brien C, Kane R (2007) The role of gremlin, a BMP antagonist, and epithelial-to-mesenchymal transition in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 48:4291–4299CrossRefGoogle Scholar
- 136.Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C (2005) Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 8:727–738CrossRefGoogle Scholar
- 137.Umazume K, Tsukahara R, Liu L, Fernandez de Castro JP, McDonald K, Kaplan HJ, Tamiya S (2014) Role of retinal pigment epithelial cell beta-catenin signaling in experimental proliferative vitreoretinopathy. Am J Pathol 184:1419–1428CrossRefGoogle Scholar
- 138.Chen Z, Shao Y, Li X (2015) The roles of signaling pathways in epithelial-to-mesenchymal transition of PVR. Mol Vis 21:706–710PubMedPubMedCentralGoogle Scholar
- 139.Yang S, Li H, Li M, Wang F (2015) Mechanisms of epithelial-mesenchymal transition in proliferative vitreoretinopathy. Discov Med 20:207–217PubMedGoogle Scholar
- 140.Chen X, Xiao W, Wang W, Luo L, Ye S, Liu Y (2014) The complex interplay between ERK1/2, TGFbeta/Smad, and Jagged/Notch signaling pathways in the regulation of epithelial-mesenchymal transition in retinal pigment epithelium cells. PLoS One 9:e96365CrossRefPubMedPubMedCentralGoogle Scholar
- 141.Parrales A, Lopez E, Lee-Rivera I, Lopez-Colome AM (2013) ERK1/2-dependent activation of mTOR/mTORC1/p70S6K regulates thrombin-induced RPE cell proliferation. Cell Signal 25:829–838CrossRefGoogle Scholar
- 142.Yokoyama K, Kimoto K, Itoh Y, Nakatsuka K, Matsuo N, Yoshioka H, Kubota T (2012) The PI3K/Akt pathway mediates the expression of type I collagen induced by TGF-beta2 in human retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol 250:15–23CrossRefGoogle Scholar
- 143.Cheng HC, Ho TC, Chen SL, Lai HY, Hong KF, Tsao YP (2008) Troglitazone suppresses transforming growth factor beta-mediated fibrogenesis in retinal pigment epithelial cells. Mol Vis 14:95–104PubMedPubMedCentralGoogle Scholar
- 144.Li H, Wang H, Wang F, Gu Q, Xu X (2011) Snail involves in the transforming growth factor beta1-mediated epithelial-mesenchymal transition of retinal pigment epithelial cells. PLoS One 6:e23322CrossRefPubMedPubMedCentralGoogle Scholar
- 145.Gamulescu MA, Chen Y, He S, Spee C, Jin M, Ryan SJ, Hinton DR (2006) Transforming growth factor beta2-induced myofibroblastic differentiation of human retinal pigment epithelial cells: regulation by extracellular matrix proteins and hepatocyte growth factor. Exp Eye Res 83:212–222CrossRefGoogle Scholar
- 146.Lei H, Rheaume MA, Kazlauskas A (2010) Recent developments in our understanding of how platelet-derived growth factor (PDGF) and its receptors contribute to proliferative vitreoretinopathy. Exp Eye Res 90:376–381CrossRefGoogle Scholar
- 147.Li M, Li H, Liu X, Xu D, Wang F (2014) MicroRNA-29b regulates TGF-beta1-mediated epithelial-mesenchymal transition of retinal pigment epithelial cells by targeting AKT2. Exp Cell Res 345:115. https://doi.org/10.1016/j.yexcr.2014.09.026CrossRefPubMedGoogle Scholar
- 148.Palma-Nicolas JP, Lopez-Colome AM (2013) Thrombin induces slug-mediated E-cadherin transcriptional repression and the parallel up-regulation of N-cadherin by a transcription-independent mechanism in RPE cells. J Cell Physiol 228:581–589CrossRefGoogle Scholar
- 149.Bastiaans J, van Meurs JC, van Holten-Neelen C, Nagtzaam NM, van Hagen PM, Chambers RC, Hooijkaas H, Dik WA (2013) Thrombin induces epithelial-mesenchymal transition and collagen production by retinal pigment epithelial cells via autocrine PDGF-receptor signaling. Invest Ophthalmol Vis Sci 54:8306–8314CrossRefGoogle Scholar
- 150.Bastiaans J, van Meurs JC, van Holten-Neelen C, Nijenhuis MS, Kolijn-Couwenberg MJ, van Hagen PM, Kuijpers RW, Hooijkaas H, Dik WA (2013) Factor Xa and thrombin stimulate proinflammatory and profibrotic mediator production by retinal pigment epithelial cells: a role in vitreoretinal disorders? Graefes Arch Clin Exp Ophthalmol 251:1723–1733CrossRefGoogle Scholar
- 151.Lei H, Kazlauskas A (2014) A reactive oxygen species-mediated, self-perpetuating loop persistently activates platelet-derived growth factor receptor alpha. Mol Cell Biol 34:110–122CrossRefPubMedPubMedCentralGoogle Scholar
- 152.Chen HC, Zhu YT, Chen SY, Tseng SC (2012) Wnt signaling induces epithelial-mesenchymal transition with proliferation in ARPE-19 cells upon loss of contact inhibition. Lab Investig 92:676–687CrossRefGoogle Scholar
- 153.Kita T, Hata Y, Miura M, Kawahara S, Nakao S, Ishibashi T (2007) Functional characteristics of connective tissue growth factor on vitreoretinal cells. Diabetes 56:1421–1428CrossRefPubMedPubMedCentralGoogle Scholar
- 154.Chen YJ, Tsai RK, Wu WC, He MS, Kao YH, Wu WS (2012) Enhanced PKCdelta and ERK signaling mediate cell migration of retinal pigment epithelial cells synergistically induced by HGF and EGF. PLoS One 7:e44937CrossRefPubMedPubMedCentralGoogle Scholar
- 155.Pennock S, Haddock LJ, Mukai S, Kazlauskas A (2014) Vascular endothelial growth factor acts primarily via platelet-derived growth factor receptor alpha to promote proliferative vitreoretinopathy. Am J Pathol 184:3052–3068CrossRefPubMedPubMedCentralGoogle Scholar
- 156.Carrington L, McLeod D, Boulton M (2000) IL-10 and antibodies to TGF-beta2 and PDGF inhibit RPE-mediated retinal contraction. Invest Ophthalmol Vis Sci 41:1210–1216PubMedPubMedCentralGoogle Scholar
- 157.Connor TB Jr, Roberts AB, Sporn MB, Danielpour D, Dart LL, Michels RG, de Bustros S, Enger C, Kato H, Lansing M et al (1989) Correlation of fibrosis and transforming growth factor-beta type 2 levels in the eye. J Clin Invest 83:1661–1666CrossRefPubMedPubMedCentralGoogle Scholar
- 158.Kita T, Hata Y, Arita R, Kawahara S, Miura M, Nakao S, Mochizuki Y, Enaida H, Goto Y, Shimokawa H, Hafezi-Moghadam A, Ishibashi T (2008) Role of TGF-beta in proliferative vitreoretinal diseases and ROCK as a therapeutic target. Proc Natl Acad Sci U S A 105:17504–17509CrossRefPubMedPubMedCentralGoogle Scholar
- 159.Chen X, Xiao W, Liu X, Zeng M, Luo L, Wu M, Ye S, Liu Y (2014) Blockade of Jagged/Notch pathway abrogates transforming growth factor beta2-induced epithelial-mesenchymal transition in human retinal pigment epithelium cells. Curr Mol Med 14:523–534CrossRefPubMedPubMedCentralGoogle Scholar
- 160.Sonoda S, Nagineni CN, Kitamura M, Spee C, Kannan R, Hinton DR (2014) Ceramide inhibits connective tissue growth factor expression by human retinal pigment epithelial cells. Cytokine 68:137–140CrossRefPubMedPubMedCentralGoogle Scholar
- 161.Liang CM, Tai MC, Chang YH, Chen YH, Chen CL, Lu DW, Chen JT (2011) Glucosamine inhibits epithelial-to-mesenchymal transition and migration of retinal pigment epithelium cells in culture and morphologic changes in a mouse model of proliferative vitreoretinopathy. Acta Ophthalmol 89:e505–e514CrossRefPubMedPubMedCentralGoogle Scholar
- 162.Choi K, Lee K, Ryu SW, Im M, Kook KH, Choi C (2012) Pirfenidone inhibits transforming growth factor-beta1-induced fibrogenesis by blocking nuclear translocation of Smads in human retinal pigment epithelial cell line ARPE-19. Mol Vis 18:1010–1020PubMedPubMedCentralGoogle Scholar
- 163.Oshima Y, Sakamoto T, Hisatomi T, Tsutsumi C, Ueno H, Ishibashi T (2002) Gene transfer of soluble TGF-beta type II receptor inhibits experimental proliferative vitreoretinopathy. Gene Ther 9:1214–1220CrossRefPubMedPubMedCentralGoogle Scholar
- 164.Lei H, Velez G, Hovland P, Hirose T, Gilbertson D, Kazlauskas A (2009) Growth factors outside the PDGF family drive experimental PVR. Invest Ophthalmol Vis Sci 50:3394–3403CrossRefPubMedPubMedCentralGoogle Scholar
- 165.Xiao W, Chen X, Liu X, Luo L, Ye S, Liu Y (2014) Trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and epithelial-mesenchymal transition in retinal pigment epithelium cells. J Cell Mol Med 18:646–655CrossRefPubMedPubMedCentralGoogle Scholar
- 166.Lei H, Velez G, Cui J, Samad A, Maberley D, Matsubara J, Kazlauskas A (2010) N-acetylcysteine suppresses retinal detachment in an experimental model of proliferative vitreoretinopathy. Am J Pathol 177:132–140CrossRefPubMedPubMedCentralGoogle Scholar
- 167.Kusaka K, Kothary PC, Del Monte MA (1998) Modulation of basic fibroblast growth factor effect by retinoic acid in cultured retinal pigment epithelium. Curr Eye Res 17:524–530CrossRefPubMedPubMedCentralGoogle Scholar
- 168.Umazume K, Liu L, Scott PA, de Castro JP, McDonald K, Kaplan HJ, Tamiya S (2013) Inhibition of PVR with a tyrosine kinase inhibitor, dasatinib, in the swine. Invest Ophthalmol Vis Sci 54:1150–1159CrossRefPubMedPubMedCentralGoogle Scholar