Advertisement

Pluripotent Stem Cells to Model Degenerative Retinal Diseases: The RPE Perspective

  • Sonal Dalvi
  • Chad A. Galloway
  • Ruchira SinghEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1186)

Abstract

Pluripotent stem cell technology, including human-induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs), has provided a suitable platform to investigate molecular and pathological alterations in an individual cell type using patient’s own cells. Importantly, hiPSCs/hESCs are amenable to genome editing providing unique access to isogenic controls. Specifically, the ability to introduce disease-causing mutations in control (unaffected) and conversely correct disease-causing mutations in patient-derived hiPSCs has provided a powerful approach to clearly link the disease phenotype with a specific gene mutation. In fact, utilizing hiPSC/hESC and CRISPR technology has provided significant insight into the pathomechanism of several diseases. With regard to the eye, the use of hiPSCs/hESCs to study human retinal diseases is especially relevant to retinal pigment epithelium (RPE)-based disorders. This is because several studies have now consistently shown that hiPSC-RPE in culture displays key physical, gene expression and functional attributes of human RPE in vivo. In this book chapter, we will discuss the current utility, limitations, and plausible future approaches of pluripotent stem cell technology for the study of retinal degenerative diseases. Of note, although we will broadly summarize the significant advances made in modeling and studying several retinal diseases utilizing hiPSCs/hESCs, our specific focus will be on the utility of patient-derived hiPSCs for (1) establishment of human cell models and (2) molecular and pharmacological studies on patient-derived cell models of retinal degenerative diseases where RPE cellular defects play a major pathogenic role in disease development and progression.

Keywords

Age-related macular degeneration Choroidal neovascularization Drusen Human induced pluripotent stem cell (hiPSC) hiPSC-based disease modeling Retinal degenerative diseases Retinitis pigmentosa Retinal pigment epithelium 

References

  1. 1.
    Chen Y, Bedell M, Zhang K (2010) Age-related macular degeneration: genetic and environmental factors of disease. Mol Interv 10:271–281CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wang W, Gawlik K, Lopez J et al (2016) Genetic and environmental factors strongly influence risk, severity and progression of age-related macular degeneration. Signal Transduct Target Ther 1:16016CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ferrari S, Di Iorio E, Barbaro V, Ponzin D, Sorrentino FS, Parmeggiani F (2011) Retinitis pigmentosa: genes and disease mechanisms. Curr Genomics 12:238–249CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tanna P, Strauss RW, Fujinami K, Michaelides M (2017) Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol 101:25–30CrossRefGoogle Scholar
  5. 5.
    Cremers FPM, van den Hurk JAJM, den Hollander AI (2002) Molecular genetics of Leber congenital amaurosis. Hum Mol Genet 11:1169–1176CrossRefGoogle Scholar
  6. 6.
    Boon CJ, Klevering BJ, Leroy BP, Hoyng CB, Keunen JE, den Hollander AI (2009) The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog Retin Eye Res 28:187–205CrossRefGoogle Scholar
  7. 7.
    Hartzell HC, Qu Z, Yu K, Xiao Q, Chien LT (2008) Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies. Physiol Rev 88:639–672CrossRefGoogle Scholar
  8. 8.
    Davis MD, Gangnon RE, Lee LY et al (2005) The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS Report No. 17. Arch Ophthalmol 123:1484–1498CrossRefGoogle Scholar
  9. 9.
    Bhutto I, Lutty G (2012) Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Asp Med 33:295–317CrossRefGoogle Scholar
  10. 10.
    Fariss RN, Apte SS, Luthert PJ, Bird AC, Milam AH (1998) Accumulation of tissue inhibitor of metalloproteinases-3 in human eyes with Sorsby’s fundus dystrophy or retinitis pigmentosa. Br J Ophthalmol 82:1329–1334CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Weingeist TA, Kobrin JL, Watzke RC (1982) Histopathology of Best’s macular dystrophy. Arch Ophthalmol 100:1108–1114CrossRefGoogle Scholar
  12. 12.
    Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sparrow JR, Hicks D, Hamel CP (2010) The retinal pigment epithelium in health and disease. Curr Mol Med 10:802–823CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Różanowski B, Burke JM, Boulton ME, Sarna T, Różanowska M (2008) Human RPE melanosomes protect from photosensitized and iron-mediated oxidation but become pro-oxidant in the presence of iron upon photodegradation. Invest Ophthalmol Vis Sci 49:2838–2847CrossRefGoogle Scholar
  15. 15.
    Bouck N (2002) PEDF: anti-angiogenic guardian of ocular function. Trends Mol Med 8:330–334CrossRefGoogle Scholar
  16. 16.
    Langton KP, McKie N, Smith BM, Brown NJ, Barker MD (2005) Sorsby’s fundus dystrophy mutations impair turnover of TIMP-3 by retinal pigment epithelial cells. Hum Mol Genet 14:3579–3586CrossRefGoogle Scholar
  17. 17.
    Klenotic PA, Munier FL, Marmorstein LY, Anand-Apte B (2004) Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a binding partner of epithelial growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) - implications for macular degenerations. J Biol Chem 279:30469–30473CrossRefGoogle Scholar
  18. 18.
    D’Cruz PM, Yasumura D, Weir J et al (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 9:645–651CrossRefGoogle Scholar
  19. 19.
    Duncan JL, LaVail MM, Yasumura D et al (2003) An RCS-like retinal dystrophy phenotype in mer knockout mice. Invest Ophthalmol Vis Sci 44:826–838CrossRefGoogle Scholar
  20. 20.
    Lukovic D, Artero Castro A, Delgado ABG et al (2015) Human iPSC derived disease model of MERTK-associated retinitis pigmentosa. Sci Rep 5:12910CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ramsden CM, Nommiste B, R Lane A et al (2017) Rescue of the MERTK phagocytic defect in a human iPSC disease model using translational read-through inducing drugs. Sci Rep 7:51CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Galloway CA, Dalvi S, Hung SSC et al (2017) Drusen in patient-derived hiPSC-RPE models of macular dystrophies. Proc Natl Acad Sci U S A 114:E8214–E8223CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fernandez-Godino R, Bujakowska KM, Pierce EA (2018) Changes in extracellular matrix cause RPE cells to make basal deposits and activate the alternative complement pathway. Hum Mol Genet 27:147–159CrossRefGoogle Scholar
  24. 24.
    Wong WL, Su X, Li X et al (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2:e106–e116CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Klein R, Chou CF, Klein BE, Zhang X, Meuer SM, Saaddine JB (2011) Prevalence of age-related macular degeneration in the US population. Arch Ophthalmol 129:75–80CrossRefGoogle Scholar
  26. 26.
    Miller JW (2013) Age-related macular degeneration revisited—piecing the puzzle: the LXIX Edward Jackson Memorial Lecture. Am J Ophthalmol 155:1–35.e13CrossRefGoogle Scholar
  27. 27.
    Curcio C, Johnson M (2012) Structure, function, and pathology of Bruch’s membrane. In: Retina, vol 1, 5th edn. Elsevier, Amsterdam, pp 465–481Google Scholar
  28. 28.
    Spaide RF, Curcio CA (2010) Drusen characterization with multimodal imaging. Retina 30:1441–1454CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Klein R, Klein BE, Knudtson MD, Meuer SM, Swift M, Gangnon RE (2007) Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study. Ophthalmology 114:253–262CrossRefGoogle Scholar
  30. 30.
    Nozaki M, Raisler BJ, Sakurai E et al (2006) Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci U S A 103:2328–2333CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Imamura Y, Noda S, Hashizume K et al (2006) Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc Natl Acad Sci U S A 103:11282–11287CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Black JR, Clark SJ (2016) Age-related macular degeneration: genome-wide association studies to translation. Genet Med 18:283–289CrossRefGoogle Scholar
  33. 33.
    Sobrin L, Reynolds R, Yu Y et al (2011) ARMS2/HTRA1 locus can confer differential susceptibility to the advanced subtypes of age-related macular degeneration. Am J Ophthalmol 151:345–352.e343CrossRefGoogle Scholar
  34. 34.
    Weber BH, Vogt G, Pruett RC, Stohr H, Felbor U (1994) Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby’s fundus dystrophy. Nat Genet 8:352–356CrossRefGoogle Scholar
  35. 35.
    Stone EM, Lotery AJ, Munier FL et al (1999) A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy. Nat Genet 22:199–202CrossRefGoogle Scholar
  36. 36.
    Hayward C, Shu X, Cideciyan AV et al (2003) Mutation in a short-chain collagen gene, CTRP5, results in extracellular deposit formation in late-onset retinal degeneration: a genetic model for age-related macular degeneration. Hum Mol Genet 12:2657–2667CrossRefGoogle Scholar
  37. 37.
    Ayyagari R, Mandal MNA, Karoukis AJ et al (2005) Late-onset macular degeneration and long anterior lens zonules result from a CTRP5 gene mutation. Invest Ophthalmol Vis Sci 46:3363–3371CrossRefGoogle Scholar
  38. 38.
    Sorsby A, Mason ME (1949) A fundus dystrophy with unusual features. Br J Ophthalmol 33:67–97CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hoskin A, Sehmi K, Bird AC (1981) Sorsby’s pseudoinflammatory macular dystrophy. Br J Ophthalmol 65:859–865CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Christensen DRG, Brown FE, Cree AJ, Ratnayaka JA, Lotery AJ (2017) Sorsby fundus dystrophy—a review of pathology and disease mechanisms. Exp Eye Res 165:35–46CrossRefGoogle Scholar
  41. 41.
    Langton KP, Barker MD, McKie N (1998) Localization of the functional domains of human tissue inhibitor of metalloproteinases-3 and the effects of a Sorsby’s fundus dystrophy mutation. J Biol Chem 273:16778–16781CrossRefGoogle Scholar
  42. 42.
    Crabb JW, Miyagi M, Gu X et al (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A 99:14682CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Fritsche LG, Igl W, Bailey JN et al (2016) A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet 48:134–143CrossRefGoogle Scholar
  44. 44.
    Marmorstein LY, McLaughlin PJ, Peachey NS, Sasaki T, Marmorstein AD (2007) Formation and progression of sub-retinal pigment epithelium deposits in Efemp1 mutation knock-in mice: a model for the early pathogenic course of macular degeneration. Hum Mol Genet 16:2423–2432CrossRefGoogle Scholar
  45. 45.
    Marmorstein LY, Munier FL, Arsenijevic Y et al (2002) Aberrant accumulation of EFEMP1 underlies drusen formation in Malattia Leventinese and age-related macular degeneration. Proc Natl Acad Sci U S A 99:13067–13072CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Roybal CN, Marmorstein LY, Vander Jagt DL, Abcouwer SF (2005) Aberrant accumulation of fibulin-3 in the endoplasmic reticulum leads to activation of the unfolded protein response and VEGF expression. Invest Ophthalmol Vis Sci 46:3973–3979CrossRefGoogle Scholar
  47. 47.
    Fu L, Garland D, Yang Z et al (2007) The R345W mutation in EFEMP1 is pathogenic and causes AMD-like deposits in mice. Hum Mol Genet 16:2411–2422CrossRefGoogle Scholar
  48. 48.
    McLaughlin PJ, Bakall B, Choi J et al (2007) Lack of fibulin-3 causes early aging and herniation, but not macular degeneration in mice. Hum Mol Genet 16:3059–3070CrossRefGoogle Scholar
  49. 49.
    Fernandez-Godino R, Garland DL, Pierce EA (2015) A local complement response by RPE causes early-stage macular degeneration. Hum Mol Genet 24:5555–5569CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Shu X, Luhmann UFO, Aleman TS et al (2011) Characterisation of a C1qtnf5 Ser163Arg knock-in mouse model of late-onset retinal macular degeneration. PLoS One 6:e27433CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Shu X, Tulloch B, Lennon A et al (2006) Disease mechanisms in late-onset retinal macular degeneration associated with mutation in C1QTNF5. Hum Mol Genet 15:1680–1689CrossRefGoogle Scholar
  52. 52.
    Jacobson SG, Cideciyan AV, Sumaroka A, Roman AJ, Wright AF (2014) Late-onset retinal degeneration caused by C1QTNF5 mutation: sub-retinal pigment epithelium deposits and visual consequences. JAMA Ophthalmol 132:1252–1255CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Borooah S, Collins C, Wright A, Dhillon B (2009) Late-onset retinal macular degeneration: clinical insights into an inherited retinal degeneration. Br J Ophthalmol 93:284PubMedGoogle Scholar
  54. 54.
    Ayyagari R, Griesinger IB, Bingham E, Lark KK, Moroi SE, Sieving PA (2000) Autosomal dominant hemorrhagic macular dystrophy not associated with the TIMP3 gene. Arch Ophthalmol 118:85–92CrossRefGoogle Scholar
  55. 55.
    Subrayan V, Morris B, Armbrecht AM, Wright AF, Dhillon B (2005) Long anterior lens zonules in late-onset retinal degeneration (L-ORD). Am J Ophthalmol 140:1127–1129CrossRefGoogle Scholar
  56. 56.
    Kuntz CA, Jacobson SG, Cideciyan AV et al (1996) Sub-retinal pigment epithelial deposits in a dominant late-onset retinal degeneration. Invest Ophthalmol Vis Sci 37:1772–1782PubMedGoogle Scholar
  57. 57.
    Edwards AO, Klein ML, Berselli CB et al (1998) Malattia leventinese: refinement of the genetic locus and phenotypic variability in autosomal dominant macular drusen. Am J Ophthalmol 126:417–424CrossRefGoogle Scholar
  58. 58.
    Evans K, Gregory CY, Wijesuriya SD et al (1997) Assessment of the phenotypic range seen in Doyne honeycomb retinal dystrophy. Arch Ophthalmol 115:904–910CrossRefGoogle Scholar
  59. 59.
    Xiao Q, Hartzell HC, Yu K (2010) Bestrophins and retinopathies. Pflugers Archiv 460:559–569CrossRefGoogle Scholar
  60. 60.
    Marquardt A, Stohr H, Passmore LA, Kramer F, Rivera A, Weber BH (1998) Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best’s disease). Hum Mol Genet 7:1517–1525CrossRefGoogle Scholar
  61. 61.
    Kramer F, White K, Pauleikhoff D et al (2000) Mutations in the VMD2 gene are associated with juvenile-onset vitelliform macular dystrophy (Best disease) and adult vitelliform macular dystrophy but not age-related macular degeneration. Eur J Hum Genet 8:286–292CrossRefGoogle Scholar
  62. 62.
    Burgess R, Millar ID, Leroy BP et al (2008) Biallelic mutation of BEST1 causes a distinct retinopathy in humans. Am J Hum Genet 82:19–31CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Yardley J, Leroy BP, Hart-Holden N et al (2004) Mutations of VMD2 splicing regulators cause nanophthalmos and autosomal dominant vitreoretinochoroidopathy (ADVIRC). Invest Ophthalmol Vis Sci 45:3683–3689CrossRefGoogle Scholar
  64. 64.
    Davidson AE, Millar ID, Urquhart JE et al (2009) Missense mutations in a retinal pigment epithelium protein, bestrophin-1, cause retinitis pigmentosa. Am J Hum Genet 85:581–592CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Li Y, Zhang Y, Xu Y et al (2017) Patient-specific mutations impair BESTROPHIN1’s essential role in mediating Ca(2+)-dependent Cl(−) currents in human RPE. elife 6:e29914CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Moshfegh Y, Velez G, Li Y, Bassuk AG, Mahajan VB, Tsang SH (2016) BESTROPHIN1 mutations cause defective chloride conductance in patient stem cell-derived RPE. Hum Mol Genet 25:2672–2680PubMedPubMedCentralGoogle Scholar
  67. 67.
    Zhang Y, Stanton JB, Wu J et al (2010) Suppression of Ca2+ signaling in a mouse model of Best disease. Hum Mol Genet 19:1108–1118CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Marmorstein AD, Johnson AA, Bachman LA et al (2018) Mutant Best1 expression and impaired phagocytosis in an iPSC model of autosomal recessive Bestrophinopathy. Sci Rep 8:4487CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Singh R, Shen W, Kuai D et al (2013) iPS cell modeling of Best disease: insights into the pathophysiology of an inherited macular degeneration. Hum Mol Genet 22:593–607CrossRefGoogle Scholar
  70. 70.
    Bakall B, Radu RA, Stanton JB et al (2007) Enhanced accumulation of A2E in individuals homozygous or heterozygous for mutations in BEST1 (VMD2). Exp Eye Res 85:34–43CrossRefGoogle Scholar
  71. 71.
    Nordstrom S, Barkman Y (1977) Hereditary maculardegeneration (HMD) in 246 cases traced to one gene-source in Central Sweden. Hereditas 84:163–176CrossRefGoogle Scholar
  72. 72.
    Sparrow JR, Duncker T, Woods R, Delori FC (2016) Quantitative fundus autofluorescence in Best vitelliform macular dystrophy: RPE lipofuscin is not increased in non-lesion areas of retina. Adv Exp Med Biol 854:285–290CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Rivolta C, Sharon D, DeAngelis MM, Dryja TP (2002) Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns. Hum Mol Genet 11:1219–1227CrossRefGoogle Scholar
  74. 74.
    Hamel C (2006) Retinitis pigmentosa. Orphanet J Rare Dis 1:40CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Daiger SP, Sullivan LS, Bowne SJ (2013) Genes and mutations causing retinitis pigmentosa. Clin Genet 84:132–141CrossRefGoogle Scholar
  76. 76.
    Ran X, Cai W-J, Huang X-F et al (2014) ‘RetinoGenetics’: a comprehensive mutation database for genes related to inherited retinal degeneration. Database 2014:bau047CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Ayala-Ramirez R, Graue-Wiechers F, Robredo V, Amato-Almanza M, Horta-Diez I, Zenteno JC (2006) A new autosomal recessive syndrome consisting of posterior microphthalmos, retinitis pigmentosa, foveoschisis, and optic disc drusen is caused by a MFRP gene mutation. Mol Vis 12:1483–1489PubMedGoogle Scholar
  78. 78.
    Mukhopadhyay R, Sergouniotis PI, Mackay DS et al (2010) A detailed phenotypic assessment of individuals affected by MFRP-related oculopathy. Mol Vis 16:540–548PubMedPubMedCentralGoogle Scholar
  79. 79.
    Ostergaard E, Duno M, Batbayli M, Vilhelmsen K, Rosenberg T (2011) A novel MERTK deletion is a common founder mutation in the Faroe Islands and is responsible for a high proportion of retinitis pigmentosa cases. Mol Vis 17:1485–1492PubMedPubMedCentralGoogle Scholar
  80. 80.
    Maw MA, Kennedy B, Knight A et al (1997) Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat Genet 17:198–200CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Li Y, Wu WH, Hsu CW et al (2014) Gene therapy in patient-specific stem cell lines and a preclinical model of retinitis pigmentosa with membrane frizzled-related protein defects. Mol Ther 22:1688–1697CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Stecher H, Gelb MH, Saari JC, Palczewski K (1999) Preferential release of 11-cis-retinol from retinal pigment epithelial cells in the presence of cellular retinaldehyde-binding protein. J Biol Chem 274:8577–8585CrossRefGoogle Scholar
  83. 83.
    Saari JC, Nawrot M, Kennedy BN et al (2001) Visual cycle impairment in cellular retinaldehyde binding protein (CRALBP) knockout mice results in delayed dark adaptation. Neuron 29:739–748CrossRefGoogle Scholar
  84. 84.
    Sweeney MO, McGee TL, Berson EL, Dryja TP (2007) Low prevalence of LRAT mutations in patients with Leber congenital amaurosis and autosomal recessive retinitis pigmentosa. Mol Vis 13:588–593PubMedPubMedCentralGoogle Scholar
  85. 85.
    Thompson DA, Gyürüs P, Fleischer LL et al (2000) Genetics and phenotypes of RPE65 mutations in inherited retinal degeneration. Invest Ophthalmol Vis Sci 41:4293–4299PubMedGoogle Scholar
  86. 86.
    Dithmar S, Sharara NA, Curcio CA et al (2001) Murine high-fat diet and laser photochemical model of basal deposits in Bruch membrane. Arch Ophthalmol 119:1643–1649CrossRefGoogle Scholar
  87. 87.
    Miceli MV, Newsome DA, Tate DJ Jr, Sarphie TG (2000) Pathologic changes in the retinal pigment epithelium and Bruch’s membrane of fat-fed atherogenic mice. Curr Eye Res 20:8–16CrossRefGoogle Scholar
  88. 88.
    Rudolf M, Winkler B, Aherrahou Z, Doehring LC, Kaczmarek P, Schmidt-Erfurth U (2005) Increased expression of vascular endothelial growth factor associated with accumulation of lipids in Bruch’s membrane of LDL receptor knockout mice. Br J Ophthalmol 89:1627–1630CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Heckenlively JR, Hawes NL, Friedlander M et al (2003) Mouse model of subretinal neovascularization with choroidal anastomosis. Retina 23:518–522CrossRefGoogle Scholar
  90. 90.
    Wang AL, Lukas TJ, Yuan M, Du N, Tso MO, Neufeld AH (2009) Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PLoS One 4:e4160CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Fujihara M, Nagai N, Sussan TE, Biswal S, Handa JT (2008) Chronic cigarette smoke causes oxidative damage and apoptosis to retinal pigmented epithelial cells in mice. PLoS One 3:e3119CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Luo C, Chen M, Xu H (2011) Complement gene expression and regulation in mouse retina and retinal pigment epithelium/choroid. Mol Vis 17:1588–1597PubMedPubMedCentralGoogle Scholar
  93. 93.
    Luo C, Zhao J, Madden A, Chen M, Xu H (2013) Complement expression in retinal pigment epithelial cells is modulated by activated macrophages. Exp Eye Res 112:93–101CrossRefGoogle Scholar
  94. 94.
    Klein RJ, Zeiss C, Chew EY et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Coffey PJ, Gias C, McDermott CJ et al (2007) Complement factor H deficiency in aged mice causes retinal abnormalities and visual dysfunction. Proc Natl Acad Sci U S A 104:16651–16656CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Ufret-Vincenty RL, Aredo B, Liu X et al (2010) Transgenic mice expressing variants of complement factor H develop AMD-like retinal findings. Invest Ophthalmol Vis Sci 51:5878–5887CrossRefGoogle Scholar
  97. 97.
    Ambati J, Anand A, Fernandez S et al (2003) An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9:1390–1397CrossRefGoogle Scholar
  98. 98.
    Alexander P, Gibson J, Cree AJ, Ennis S, Lotery AJ (2014) Complement factor I and age-related macular degeneration. Mol Vis 20:1253–1257PubMedPubMedCentralGoogle Scholar
  99. 99.
    Gold B, Merriam JE, Zernant J et al (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38:458–462CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Weber BH, Lin B, White K et al (2002) A mouse model for Sorsby fundus dystrophy. Invest Ophthalmol Vis Sci 43:2732–2740PubMedGoogle Scholar
  101. 101.
    Chavali VRM, Khan NW, Cukras CA, Bartsch D-U, Jablonski MM, Ayyagari R (2011) A CTRP5 gene S163R mutation knock-in mouse model for late-onset retinal degeneration. Hum Mol Genet 20:2000–2014CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Sahu B, Chavali VR, Alapati A et al (2015) Presence of rd8 mutation does not alter the ocular phenotype of late-onset retinal degeneration mouse model. Mol Vis 21:273–284PubMedPubMedCentralGoogle Scholar
  103. 103.
    Dinculescu A, Min S-H, Dyka FM et al (2015) Pathological effects of mutant C1QTNF5 (S163R) expression in murine retinal pigment epithelium. Invest Ophthalmol Vis Sci 56:6971–6980CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Milam AH, Curcio CA, Cideciyan AV et al (2000) Dominant late-onset retinal degeneration with regional variation of sub-retinal pigment epithelium deposits, retinal function, and photoreceptor degeneration. Ophthalmology 107:2256–2266CrossRefGoogle Scholar
  105. 105.
    Milenkovic A, Brandl C, Milenkovic VM et al (2015) Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells. Proc Natl Acad Sci U S A 112:E2630CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Marmorstein LY, Wu J, McLaughlin P et al (2006) The light peak of the electroretinogram is dependent on voltage-gated calcium channels and antagonized by Bestrophin (Best-1). J Gen Physiol 127:577–589CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Gal A, Li Y, Thompson DA et al (2000) Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet 26:270–271CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Bok D, Hall MO (1971) The role of the pigment epithelium in the etiology of inherited retinal dystrophy in the rat. J Cell Biol 49:664–682CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Dowling JE, Sidman RL (1962) Inherited retinal dystrophy in the rat. J Cell Biol 14:73–109CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    LaVail MM, Battelle BA (1975) Influence of eye pigmentation and light deprivation on inherited retinal dystrophy in the rat. Exp Eye Res 21:167–192CrossRefGoogle Scholar
  111. 111.
    Hawes NL, Chang B, Hageman GS et al (2000) Retinal degeneration 6 (rd6): a new mouse model for human retinitis punctata albescens. Invest Ophthalmol Vis Sci 41:3149–3157PubMedGoogle Scholar
  112. 112.
    Kameya S, Hawes NL, Chang B, Heckenlively JR, Naggert JK, Nishina PM (2002) Mfrp, a gene encoding a frizzled related protein, is mutated in the mouse retinal degeneration 6. Hum Mol Genet 11:1879–1886CrossRefGoogle Scholar
  113. 113.
    Velez G, Tsang SH, Tsai YT et al (2017) Gene therapy restores Mfrp and corrects axial eye length. Sci Rep 7:16151CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Fogerty J, Besharse JC (2011) 174delG mutation in mouse MFRP causes photoreceptor degeneration and RPE atrophy. Invest Ophthalmol Vis Sci 52:7256–7266CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Won J, Smith RS, Peachey NS et al (2008) Membrane frizzled-related protein is necessary for the normal development and maintenance of photoreceptor outer segments. Vis Neurosci 25:563–574CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Pennesi ME, Neuringer M, Courtney RJ (2012) Animal models of age related macular degeneration. Mol Asp Med 33:487–509CrossRefGoogle Scholar
  117. 117.
    Glotin AL, Debacq-Chainiaux F, Brossas JY et al (2008) Prematurely senescent ARPE-19 cells display features of age-related macular degeneration. Free Radic Biol Med 44:1348–1361CrossRefGoogle Scholar
  118. 118.
    Johnson LV, Forest DL, Banna CD et al (2011) Cell culture model that mimics drusen formation and triggers complement activation associated with age-related macular degeneration. Proc Natl Acad Sci U S A 108:18277–18282CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Pilgrim MG, Lengyel I, Lanzirotti A et al (2017) Subretinal pigment epithelial deposition of Drusen components including hydroxyapatite in a primary cell culture model. Invest Ophthalmol Vis Sci 58:708–719CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Radu RA, Hu J, Jiang Z, Bok D (2014) Bisretinoid-mediated complement activation on retinal pigment epithelial cells is dependent on complement factor H haplotype. J Biol Chem 289:9113–9120CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefGoogle Scholar
  122. 122.
    Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Tucker BA, Mullins RF, Streb LM et al (2013) Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. elife 2:e00824CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Wiley LA, Burnight ER, Songstad AE et al (2015) Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases. Prog Retin Eye Res 44:15–35CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Chen FK, McLenachan S, Edel M, Da Cruz L, Coffey PJ, Mackey DA (2014) iPS cells for modelling and treatment of retinal diseases. J Clin Med 3:1511–1541CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Phillips MJ, Wallace KA, Dickerson SJ et al (2012) Blood-derived human iPS cells generate optic vesicle-like structures with the capacity to form retinal laminae and develop synapses. Invest Ophthalmol Vis Sci 53:2007–2019CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Meyer JS, Howden SE, Wallace KA et al (2011) Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 29:1206–1218CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Chang Y-C, Chang W-C, Hung K-H et al (2014) The generation of induced pluripotent stem cells for macular degeneration as a drug screening platform: identification of curcumin as a protective agent for retinal pigment epithelial cells against oxidative stress. Front Aging Neurosci 6:191CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Tucker BA, Anfinson KR, Mullins RF, Stone EM, Young MJ (2013) Use of a synthetic xeno-free culture substrate for induced pluripotent stem cell induction and retinal differentiation. Stem Cells Transl Med 2:16–24CrossRefGoogle Scholar
  130. 130.
    Meyer JS, Shearer RL, Capowski EE et al (2009) Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A 106:16698–16703CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Phillips MJ, Perez ET, Martin JM et al (2014) Modeling human retinal development with patient-specific induced pluripotent stem cells reveals multiple roles for visual system homeobox 2. Stem Cells 32:1480–1492CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Tucker BA, Mullins RF, Stone EM (2014) Stem cells for investigation and treatment of inherited retinal disease. Hum Mol Genet 23(R1):R9–R16CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Schwartz SD, Regillo CD, Lam BL et al (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385(9967):509–516CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Ramsden CM, Powner MB, Carr AJ, Smart MJ, da Cruz L, Coffey PJ (2013) Stem cells in retinal regeneration: past, present and future. Development 140:2576–2585CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Singh R, Kuai D, Guziewicz KE et al (2015) Pharmacological modulation of photoreceptor outer segment degradation in a human iPS cell model of inherited macular degeneration. Mol Ther 23:1700–1711CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Hallam D, Collin J, Bojic S et al (2017) An induced pluripotent stem cell patient specific model of complement factor H (Y402H) polymorphism displays characteristic features of age-related macular degeneration and indicates a beneficial role for UV light exposure. Stem Cells 35:2305–2320CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Saini JS, Corneo B, Miller JD et al (2017) Nicotinamide ameliorates disease phenotypes in a human iPSC model of age-related macular degeneration. Cell Stem Cell 20:635–647.e637CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Jin ZB, Okamoto S, Xiang P, Takahashi M (2012) Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling. Stem Cells Transl Med 1:503–509CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Curcio CA, Medeiros NE, Millican CL (1996) Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci 37:1236–1249PubMedGoogle Scholar
  140. 140.
    Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ (1989) Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci 30:1691–1699PubMedGoogle Scholar
  141. 141.
    Holz FG, Haimovici R, Wagner DG, Bird AC (1994) Recurrent choroidal neovascularization after laser photocoagulation in Sorsby’s fundus dystrophy. Retina 14:329–334CrossRefGoogle Scholar
  142. 142.
    Michaelides M, Jenkins SA, Brantley JMA et al (2006) Maculopathy due to the R345W substitution in fibulin-3: distinct clinical features, disease variability, and extent of retinal dysfunction. Invest Ophthalmol Vis Sci 47:3085–3097CrossRefGoogle Scholar
  143. 143.
    Prager F, Michels S, Geitzenauer W, Schmidt-Erfurth U (2007) Choroidal neovascularization secondary to Sorsby fundus dystrophy treated with systemic bevacizumab (Avastin). Acta Ophthalmol Scand 85:904–906CrossRefGoogle Scholar
  144. 144.
    Gamal W, Borooah S, Smith S et al (2015) Real-time quantitative monitoring of hiPSC-based model of macular degeneration on electric cell-substrate impedance sensing microelectrodes. Biosens Bioelectron 71:445–455CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Giaever I, Keese CR (1984) Monitoring fibroblast behavior in tissue-culture with an applied electric-field. Proc Natl Acad Sci U S A 81:3761–3764CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Giaever I, Keese CR (1991) Micromotion of mammalian-cells measured electrically. Proc Natl Acad Sci U S A 88:7896–7900CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Gupton SL, Waterman-Storer CM (2006) Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 125:1361–1374CrossRefGoogle Scholar
  148. 148.
    Yang J, Li Y, Chan L et al (2014) Validation of genome-wide association study (GWAS)-identified disease risk alleles with patient-specific stem cell lines. Hum Mol Genet 23:3445–3455CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Golestaneh N, Chu Y, Cheng SK, Cao H, Poliakov E, Berinstein DM (2016) Repressed SIRT1/PGC-1α pathway and mitochondrial disintegration in iPSC-derived RPE disease model of age-related macular degeneration. J Transl Med. 14(1):344. Published 2016 Dec 20.  https://doi.org/10.1186/s12967-016-1101-8
  150. 150.
    Lores-Motta L, Paun CC, Corominas J et al (2018) Genome-wide association study reveals variants in CFH and CFHR4 associated with systemic complement activation: implications in age-related macular degeneration. Ophthalmology 125:1064CrossRefGoogle Scholar
  151. 151.
    Garcia TY, Gutierrez M, Reynolds J, Lamba DA (2015) Modeling the dynamic AMD-associated chronic oxidative stress changes in human ESC and iPSC-derived RPE cells. Invest Ophthalmol Vis Sci 56:7480–7488CrossRefGoogle Scholar
  152. 152.
    Liang H, Ward WF (2006) PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 30:145–151CrossRefGoogle Scholar
  153. 153.
    Canto C, Auwerx J (2009) PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20:98–105CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Artero Castro A, Lukovic D, Jendelova P, Erceg S (2018) Concise review: human induced pluripotent stem cell models of retinitis pigmentosa. Stem Cells 36:474–481CrossRefGoogle Scholar
  155. 155.
    Brunner S, Skosyrski S, Kirschner-Schwabe R et al (2010) Cone versus rod disease in a mutant Rpgr mouse caused by different genetic backgrounds. Invest Ophthalmol Vis Sci 51:1106–1115CrossRefGoogle Scholar
  156. 156.
    Kostic C, Arsenijevic Y (2016) Animal modelling for inherited central vision loss. J Pathol 238:300–310CrossRefGoogle Scholar
  157. 157.
    Sorrentino FS, Gallenga CE, Bonifazzi C, Perri P (2016) A challenge to the striking genotypic heterogeneity of retinitis pigmentosa: a better understanding of the pathophysiology using the newest genetic strategies. Eye 30:1542CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Jin Z-B, Okamoto S, Osakada F et al (2011) Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PLoS One 6:e17084CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Yoshida T, Ozawa Y, Suzuki K et al (2014) The use of induced pluripotent stem cells to reveal pathogenic gene mutations and explore treatments for retinitis pigmentosa. Mol Brain 7:45CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Tucker BA, Scheetz TE, Mullins RF et al (2011) Exome sequencing and analysis of induced pluripotent stem cells identify the cilia-related gene male germ cell-associated kinase (MAK) as a cause of retinitis pigmentosa. Proc Natl Acad Sci U S A 108:E569–E576CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Schwarz N, Carr AJ, Lane A et al (2015) Translational read-through of the RP2 Arg120stop mutation in patient iPSC-derived retinal pigment epithelium cells. Hum Mol Genet 24:972–986CrossRefGoogle Scholar
  162. 162.
    Tucker BA, Cranston CM, Anfinson KA et al (2015) Using patient-specific induced pluripotent stem cells to interrogate the pathogenicity of a novel retinal pigment epithelium-specific 65 kDa cryptic splice site mutation and confirm eligibility for enrollment into a clinical gene augmentation trial. Transl Res 166:740–749.e741CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Marmorstein AD, Marmorstein LY, Rayborn M, Wang X, Hollyfield JG, Petrukhin K (2000) Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc Natl Acad Sci U S A 97:12758–12763CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Pasquay C, Wang LF, Lorenz B, Preising MN (2015) Bestrophin 1—phenotypes and functional aspects in Bestrophinopathies. Ophthalmic Genet 36:193–212CrossRefGoogle Scholar
  165. 165.
    Chacon-Camacho OF, Zenteno JC (2015) Review and update on the molecular basis of Leber congenital amaurosis. World J Clin Cases 3:112–124CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Chichagova V, Hallam D, Collin J et al (2017) Human iPSC disease modelling reveals functional and structural defects in retinal pigment epithelial cells harbouring the m.3243A > G mitochondrial DNA mutation. Sci Rep 7:12320CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Phillips PH, Newman NJ (1997) Mitochondrial diseases in pediatric ophthalmology. J AAPOS 1:115–122CrossRefGoogle Scholar
  168. 168.
    Michaelides M, Jenkins SA, Bamiou DE et al (2008) Macular dystrophy associated with the A3243G mitochondrial DNA mutation. Distinct retinal and associated features, disease variability, and characterization of asymptomatic family members. Arch Ophthalmol 126:320–328CrossRefGoogle Scholar
  169. 169.
    Gorman GS, Taylor RW (2011) Mitochondrial DNA abnormalities in ophthalmological disease. Saudi J Ophthalmol 25:395–404CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Rummelt V, Folberg R, Ionasescu V, Yi H, Moore KC (1993) Ocular pathology of MELAS syndrome with mitochondrial DNA nucleotide 3243 point mutation. Ophthalmology 100:1757–1766CrossRefGoogle Scholar
  171. 171.
    Chang TS, Johns DR, Walker D, de la Cruz Z, Maumence IH, Green WR (1993) Ocular clinicopathologic study of the mitochondrial encephalomyopathy overlap syndromes. Arch Ophthalmol 111:1254–1262CrossRefGoogle Scholar
  172. 172.
    Golestaneh N, Chu Y, Cheng SK, Cao H, Poliakov E, Berinstein DM (2016) Repressed SIRT1/PGC-1alpha pathway and mitochondrial disintegration in iPSC-derived RPE disease model of age-related macular degeneration. J Transl Med 14:344CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Singh R, Phillips MJ, Kuai D et al (2013) Functional analysis of serially expanded human iPS cell-derived RPE cultures. Invest Ophthalmol Vis Sci 54:6767–6778CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Deng WL, Gao ML, Lei XL et al (2018) Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients. Stem Cell Rep 10:2005CrossRefGoogle Scholar
  175. 175.
    Barnea-Cramer AO, Wang W, Lu SJ et al (2016) Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice. Sci Rep 6:29784CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Wahlin KJ, Maruotti JA, Sripathi SR et al (2017) Photoreceptor outer segment-like structures in long-term 3D retinas from human pluripotent stem cells. Sci Rep 7:766CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Rando TA, Chang HY (2012) Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148:46–57CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Parmar VM, Parmar T, Arai E, Perusek L, Maeda A (2018) A2E-associated cell death and inflammation in retinal pigmented epithelial cells from human induced pluripotent stem cells. Stem Cell Res 27:95–104CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Edwards MM, Maddox DM, Won J, Naggert JK, Nishina PM (2007) Genetic modifiers that affect phenotypic expression of retinal diseases. In: Tombran-Tink J, Barnstable CJ (eds) Retinal degenerations: biology, diagnostics, and therapeutics. Humana, Totowa, NJ, pp 237–255CrossRefGoogle Scholar
  180. 180.
    Vitale AM, Matigian NA, Ravishankar S et al (2012) Variability in the generation of induced pluripotent stem cells: importance for disease modeling. Stem Cells Transl Med 1:641–650CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Steinemann D, Gohring G, Schlegelberger B (2013) Genetic instability of modified stem cells - a first step towards malignant transformation? Am J Stem Cells 2:39–51PubMedPubMedCentralGoogle Scholar
  182. 182.
    Saha K, Jaenisch R (2009) Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 5:584–595CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Nguyen HV, Li Y, Tsang SH (2015) Patient-specific iPSC-derived RPE for modeling of retinal diseases. J Clin Med 4:567–578CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Windrem MS, Osipovitch M, Liu Z et al (2017) Human iPSC glial mouse chimeras reveal glial contributions to schizophrenia. Cell Stem Cell 21:195–208.e196CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Lund RD, Wang S, Klimanskaya I et al (2006) Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 8:189–199CrossRefGoogle Scholar
  186. 186.
    Goldman SA, Nedergaard M, Windrem MS (2015) Modeling cognition and disease using human glial chimeric mice. Glia 63:1483–1493CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sonal Dalvi
    • 1
    • 2
  • Chad A. Galloway
    • 1
    • 2
  • Ruchira Singh
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of Ophthalmology, Flaum Eye InstituteUniversity of RochesterRochesterUSA
  2. 2.Department of Biomedical GeneticsUniversity of RochesterRochesterUSA
  3. 3.UR Stem Cell and Regenerative Medicine InstituteRochesterUSA
  4. 4.Center for Visual ScienceUniversity of RochesterRochesterUSA

Personalised recommendations