Skip to main content

Surface Plasma Negative Ion Sources

  • Chapter
  • First Online:
Development and Applications of Negative Ion Sources

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 110))

  • 428 Accesses

Abstract

Surface plasma H ion sources for accelerators; design of surface plasma H ion sources for accelerators; formation of H ion beams in surface plasma sources for accelerators; surface plasma sources with Penning discharge for microlithography; semiplanotrons; geometric focusing; semiplanotrons for accelerators; semiplanotrons with spherical focusing for continuous operation; compact surface plasma sources for heavy negative ion production; development of surface plasma sources world-wide; large volume surface plasma sources with self-extraction; large volume surface plasma sources for accelerators; large volume surface plasma sources for heavy ion production; surface plasma sources for intense neutral beam production for controlled fusion; RF surface plasma sources for ITER; neutral beam injector with RF SPS development at Novosibirsk; RF surface plasma sources for spallation neutron sources; carbon films in RF surface plasma sources with cesiation; poisoning and recovery of converter surfaces; RF surface plasma sources with external antenna; RF surface plasma sources with solenoidal magnetic field; testing RF surface plasma sources with saddle antenna and magnetic field; estimation of H ion beam generation efficiency; RF surface plasma source operation in continuous mode; RF surface plasma sources at CERN; surface plasma sources at J-PARC, Japan; surface plasma sources for low-energy neutrals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.P. Murin, in Proc. VII Internat. Conf. on High Energy Acc., CERN, (1971), p. 540

    Google Scholar 

  2. M.I. Avramenko, G.I. Bazkikh, V.P. Golubev, G.I. Klenov, in Proc. Allunion Workshop on Particle Accelerators, vol. 1 (M. Nauka, 1973), p. 261; М.И. Авраменко, Г.И. Бацких, В.П. Голубев, Г.И. Кленов и др. in Труды Всесоюзного совещания по ускорителям заряженных частиц, т. 1 (М. Наука, 1973), стр. 261

    Google Scholar 

  3. V.G. Dudnikov, in Hydrogen Negative Ion Source with Penning Geometry, vol. 1 (M. Nauka, 1975), p. 323. English translation, V.G. Dudnikov, in Surface-Plasma Source of Negative Ions with Penning Geometry (Los Alamos, LA-TR--75-4, 1975); В.Г. Дудников, in Источник отрицательных ионов водорода с Пеннинговской геометрией, Труды IV Всесоюзного совещания по ускорителям заряженных частиц, т. 1 (М. Наука, 1975), стр. 323.

    Google Scholar 

  4. W. Maus-Friedrichs, M. Wehrhahn, S. Dieckhoff, V. Kempter, Coadsorption of Cs and hydrogen on W(110) studied by metastable impact electron spectroscopy. Surf. Sci. 237, 257 (1990)

    Article  ADS  Google Scholar 

  5. G.E. Derevyankin, V.G. Dudnikov, P.A. Zhuravlev, Electromagnetic shutter for a pulsed gas inlet into vacuum units. Pribory i Tekhnika Eksperimenta 5, 168 (1975)

    Google Scholar 

  6. M.D. Gabovich, Physics and Technology of Plasma Ion Sources (Atomizdat, Moscow, 1972); М.Д. Габович, Физика и техника Плазменных источников ионов (Атомиздат, Москва, 1972)

    Google Scholar 

  7. V.M. Neslin, Plasma Phys. 10, 337 (1968)

    Article  ADS  Google Scholar 

  8. C. Lejnne, in Proc. Sec. Symp. on Ion Sources and Ion Beams, Berkeley, LBL Report No 3399 (1974), p. I-1

    Google Scholar 

  9. A.S. Belov, V.S. Klenov, V.P. Yakushev, Rev. Sci. Instrum. 63, 2422 (1992)

    Article  ADS  Google Scholar 

  10. V.G. Dudnikov, Review of high brightness ion sources for microlithography. Rev. Sci. Instrum. 67(3), 915–920 (1996)

    Article  ADS  Google Scholar 

  11. S.K. Guharay, W. Wang, V.G. Dudnikov, M. Reiser, J. Orloff, J. Melngailis, High brightness ion source for ion projection lithography. J. Vac. Sci. Technol. B Microelectron. Nanometer (1996)

    Google Scholar 

  12. V.G. Dudnikov, G.E. Derevyankin, D.V. Kovalevsky, V.Y. Savkin, et al., Surface plasma source to generate high‐brightness H beams for ion projection lithographya. Rev. Sci. Instrum. 67(4), 1614–1617 (1996)

    Article  ADS  Google Scholar 

  13. V. Dudnikov, Y. Belchenko, Preprint, INP 78-95 (Novosibirsk, 1978); V. Dudnikov, Y. Belchenko, J. Phys. 40, 477 (1979)

    Google Scholar 

  14. Y.I. Belchenko, in High Current Quasistacionary and Pulsed Surface Plasma Sources of Hydrogen Negative Ions, Doctor thesis (Novosibirsk, 1991); Y.I. Belchenko, Сильноточные квазистационарные и импульсные поверхностно-плазменные источники отрицательных ионов водорода, Doctor thesis (Novosibirsk, 1991)

    Google Scholar 

  15. Y.I. Belchenko, G.I. Dimov, V.G. Dudnikov, A.S. Kupriyanov, Negative ion surface-plasma source development for fusion in Novosibirsk. Rev Phys Appl 23(11), 1847 (1988)

    Article  Google Scholar 

  16. Y.I. Belchenko, V.G. Dudnikov, Surface plasma source with increased efficiency of H generation, Preprint INP 80-30 (Novosibirsk, 1980), in Proc. XV International Conference on Phenomena in Ionized Gases, Minsk (1981), p. II, p. 1504; Ю.И. Бельченко, В.Г. Дудников, Поверхностно-плазменный источник с повышенной эффективностью генерации ионов Н-, Препринт ИЯФ 80-30 (Новосибирсу, 1980), in Труды ХУ Межднародной конференция по явлениям в ионизированных гаsах, Минck (1981)

    Google Scholar 

  17. Y.I. Belchenko, Preprint INP 52-82 (Novosibirsk, 1982); Y.I. Belchenko, Fiz. Plazmy. 9, 1219 (1983); Ю.И. Бельченко, Препринт ИЯФ СО АН СССР, № 52-82 (Новосибирск, 1982); Физика плазмы, 9, № 2 (1983)

    Google Scholar 

  18. Y.I. Belchenko, A.S. Kupriyanov, High current surface plasma negative ion sources with geometrical focusing. Rev. Sci. Instrum. 61, 484 (1990)

    Article  ADS  Google Scholar 

  19. Y.I. Belchenko, G.E. Derevyankin, V.G. Dudnikov, Patent SSSP, Negative ion source, 854197 (1080), http://www.findpatent.ru/patent/85/854197.html; Бельченко Ю.И., Деревянкин Г.Е., Дудников В.Г., Источник Отрицательных Ионов, Авторское свидетельство, 854197, (1980)

  20. Y.I. Belchenko, G.E. Derevyankin, V.G. Dudnikov, in Proc. Simp. Production and Neutralization of Negative Hydrogen Ions and Beams, BNL 50727 (1977), p. 74

    Google Scholar 

  21. G.E. Derevyankin, in Surface Plasma Sources for Accelerators, Ph. D. thesis (Novosibirsk, 1987)

    Google Scholar 

  22. G.E. Derevyankin, V.G. Dudnikov, Production of high brightness H beams in surface plasma sources. AIP Conf. Proc. 111(1), 376–397 (1984)

    Article  ADS  Google Scholar 

  23. A.A. Bashkeev, V.G. Dudnikov, Continuously operated negative ion surface plasma source. AIP Conf. Proc. 210(1), 329–339 (1990)

    Article  ADS  Google Scholar 

  24. V. Dudnikov, C.W. Schmidt, R. Hren, J. Wendt, Direct current surface plasma source with high emission current density. Rev. Sci. Instrum. 73(2), 989 (2002)

    Article  ADS  Google Scholar 

  25. V. Dudnikov, C.W. Schmidt, R. Hren, J. Wendt, High current density negative ion source for beam line transport studies, in PAC 2001, Chicago (2001)

    Google Scholar 

  26. V. Dudnikov, J.P. Farrell, Compact surface plasma sources for heavy negative ion production. Rev. Sci. Instrum. 75(5), 1732 (2004)

    Article  ADS  Google Scholar 

  27. K. Prelec, T. Sluyters, in Proc. 2nd Sym. on Ion Sources and Formation of Ion Beams, Berkeley, VIII-6, LBL-3399 (1974)

    Google Scholar 

  28. K. Prelec, T. Sluyters, A pulsed negative hydrogen source for currents up to one ampere. EEE Trans. Nucl. Sci. NS-22(3), 1662 (1975)

    Article  ADS  Google Scholar 

  29. K. Prelec, T. Sluyters, M. Grossman, High currant negative ion beams. IEEE Trans. Nucl. Sci. NS-24(3), 1521 (1977)

    Article  ADS  Google Scholar 

  30. J.G. Alessi, T. Sluyters, Regular and asymmetric negative ion magnetron sources with grooved cathodes. Rev. Sci. Instrum. 51(12), 1630 (1980)

    Article  ADS  Google Scholar 

  31. J. Alessi, A. Hershcovitch, K. Prelec, T. Sluyters, Development of multiampere negative ion sources. IEEE Trans. Nucl. Sci. NS-28(3), 2652 (1981)

    Article  ADS  Google Scholar 

  32. C. Schmidt, C. Curtis, Negative hydrogen-ion program at fermilab, in Proceedings of the 1976 Proton Linear Accelerator Conference, Chalk River (1976)

    Google Scholar 

  33. C.W. Schmidt, C.D. Curtis, A 50-mA negative hydrogen-ion source. IEEE Trans. Nucl. Sci. NS-26(3), 4120 (1979)

    Article  ADS  Google Scholar 

  34. C.W. Schmidt, C.D. Curtis, in Proc. Symp. on the Production and Neutralization of Negative Hydrogen Ions and Beams, BNL, 26–30 Sept 1977, BNL50727 (1977), p. 123

    Google Scholar 

  35. J.G. Alessi, J.M. Brennan, A. Kponou, K. Prelec, H source and beam transport experiments for a new RFQ, in PAC 1987 (1987)

    Google Scholar 

  36. C.D. Curtis, C.W. Owen, C.W. Schmidt, Factors affecting H-beam performance in The Fermilab Linac 41, in Proceedings of the 1986 International Linac Conference, Stanford (1986)

    Google Scholar 

  37. V. Stipp, A. Dewitt, J. Madsen, A brighter H source for the intense pulsed neutron source accelerator systex. IEEE Trans. Nucl. Sci. NS-30(4), 2743 (1983)

    Article  ADS  Google Scholar 

  38. D.S. Barton, R.L. Witkover, Negative ion source tests for H- injection at the Brookraven AGS. IEEE Trans. Nucl. Sci. NS-28(3), 2681 (1981)

    Article  ADS  Google Scholar 

  39. J. Peters, The status of DESY H- sources. Rev. Sci. Instrum. 69(2), 992 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  40. T. Shimizu, T. Morishita, M. Kawagi, M. Hanada, T. Iga, T. Inoue, K. Watanabe, M. Wada, T. Imai, Japan Atomic Energy Research Institute, Report JAERI-Tech 2003-006, March 2003; T. Morishita, M. Kashiwagi, M. Hanada, et al., Mechanism of negative ion production in a cesium seeded ion source, Jpn. J. Appl. Phys. 40, 4709 (2001)

    Article  ADS  Google Scholar 

  41. D.S. Bollinger, A. Sosa, Overview of recent studies and design changes for the FNAL magnetron ion source. AIP Conf. Proc. 1869, 030054 (2017)

    Article  Google Scholar 

  42. P.W. Allison, E.A. Meyer, D.W. Mueller, R.R. Stevens Jr., Status of the Lampf H- injector, in Proceedings of the 1972 Proton Linear Accelerator Conference, Los Alamos (1972)

    Google Scholar 

  43. G.I Dimov, G.E. Derevyankin, V.G. Dudnikov, IEEE Trans. Nucl. Sci., NS24, No 3 (1977)

    Google Scholar 

  44. C. Robinson, Aviation Week & Space Tech. (1978), p. 42; Rev. Mod. Phys. 59(3), Part II (1987)

    Google Scholar 

  45. Report to the APS of the Study Group on Science and Technology of Directed Energy Weapons, Executive Summary and Major Condusions, Physics Today (1987)

    Google Scholar 

  46. P.W. Allison, Experiments with Dudnikov type H- source, preprint LA-UK-77-2113 (Los Alamos, 1977)

    Google Scholar 

  47. P.W. Allison, Experiments with a Dudnikov type H- ion source, in Proc. Symp. on the Production and Neutralization of Negative Hydrogen Ions and Beams, Upton, New York, 26–30 Sept 1977, Brookhaven National Laboratory report BNL-50727 (1977), p. 119

    Google Scholar 

  48. H. Vernon Smith Jr., P. Allison, H- beam emittance measurements for the penning and the asymmetric, grooved magnetron surface-plasma sources, in Proceedings of the 1981 Linear Accelerator Conference, Santa Fe (1981)

    Google Scholar 

  49. P. Alisson, J. Sherman, Operation experience with 100 keV, 100 mA injector. AIP Conf. Proc. 111, 511 (1981)

    Article  ADS  Google Scholar 

  50. H. Vernon Smith Jr., J.D. Sherman, C. Geisik, P. Allison, H temperature dependences in a Penning surface plasma source. Rev. Sci. Instrum. 63, 2723 (1992)

    Article  ADS  Google Scholar 

  51. H. Vernon Smith Jr., P. Allison, J.D. Sherman, H and D scaling laws for Penning surface-plasma sources. Rev. Sci. Instrum. 65(I), 123 (1994)

    Article  ADS  Google Scholar 

  52. H. Vernon Smith Jr., P. Allison, J.D. Sherman, The 4x source. IEEE Trans. Nucl. Sci. NS-32(5), 1797 (1985)

    Article  ADS  Google Scholar 

  53. J.C. Sherman, P. Allison, H.V. Smith, Beam potential measurement of an intense H- beam by use of the emissive probe technique. EEE Trans. Nucl. Sci. NS-32(5), 1973 (1985)

    Article  ADS  Google Scholar 

  54. H. Vernon Smith Jr., in Emission Spectroscopy of the 4X Source Discharge with and without N2 Gas, AT-10 Technical Note: 89-07 (1989)

    Google Scholar 

  55. J.D. Sherman, W.B. Ingalls, G. Rouleau, H. Vernon Smith Jr., Review of scaled penning H- surface plasma source with slit with slit emitters for high duty factor linacs, CP642, in High Intensity and High Brightness Hadron Beams: 20th ICFA Advanced Beam Dynamics Workshop on High Intensity and High Brightness Hadron Beams, ed. by W. Chou, Y. Mori, D. Neuffer, J.-F. Ostiguy. 2002 American Institute of Physics 0-7354-0097-0 (2002)

    Google Scholar 

  56. V. Dudnikov, D. Bollinger, D. Faircloth, S. Lawrie, Potential for improving of the compact surface plasma sources. AIP Conf. Proc. 1515, 369 (2013)

    Article  ADS  Google Scholar 

  57. K.N. Leung, G.J. DeVries, K.W. Ehlers, L.T. Jackson, J.W. Stearns, M.D. Williams, M.P. Allison, Operation of a Dudnikov type Penning source with LaB6 cathodes. AIP Conf. Proc. 158, 356 (1987)

    Article  ADS  Google Scholar 

  58. P.E. Gear, R. Sidlow, in Proc 2nd Int. Conf. Low Energy Ion Beams, Bath, Inst. Phys. Con. Ser No 54 (1980), p. 284

    Google Scholar 

  59. R. Sidlow, P.J.S. Barratt, A.P. Letchford, M. Perkins, C.W. Planner, Operational experience of Penning H- ion sources at ISISisis, in PAC 1996 (1996)

    Google Scholar 

  60. D.C. Faircloth, A.P. Letchford, C. Gabor, M.O. Whitehead, T. Wood, Understanding extraction and beam transport in the ISIS H Penning surface plasma ion source. Rev. Sci. Instrum. 79, 02B717 (2008)

    Article  Google Scholar 

  61. D.C. Faircloth, S.R. Lawrie, et al., High current results from the 2X scaled penning source. AIP Conf. Proc. 2052, 050004-1–050004-7 (2018)

    Google Scholar 

  62. L. Sheng-Jin, H. Tao, O. Hua-Fu, et al., Status of CSNS H ion source. Chin. Phys. C 39(5), 057008 (2015)

    Article  ADS  Google Scholar 

  63. W.K. Dagenhart, W.L. Stirling, H.H. Haselton, G.G. Kelley, J. Kim, C.C. Tsai, J.H. Whealton, Modified calutron negative ion source operation and future plans, in Proceedings of the Second International Symposium on the Production and Neutralization of Negative Hydrogen Ions and Beams, Brookhaven National Laboratory, Upton, New York (1980), p. 217

    Google Scholar 

  64. Y. Belchenko, V. Savkin, Direct current H source for the medicine accelerator. Rev. Sci. Instrum. 75(5), 1704 (2005)

    Article  ADS  Google Scholar 

  65. Y. Belchenko, A. Sanin, A. Ivanov, 15 mA CW H- source for accelerators. AIP Conf. Proc. 1097, 214–222 (2009)

    Article  ADS  Google Scholar 

  66. Y.I. Belchenko, A.I. Gorbovsky, A.A. Ivanov, A.L. Sanin, V.Y. Savkin, et al., Upgrade of CW negative hydrogen ion source. AIP Conf. Proc. 1515, 448 (2013)

    Article  ADS  Google Scholar 

  67. Y. Belchenko, A. Gorbovsky, A. Sanin, V. Savkin, The 25 mA continuous-wave surface-plasma source of H ions. Rev. Sci. Instrum. 85, 02B108 (2014)

    Article  Google Scholar 

  68. M.L. Yu, Phys. Rev. Lett. 40, 574 (1978)

    Article  ADS  Google Scholar 

  69. Y. Belchenko, A. Sanin, O. Sotnikov, Comparative analysis of continuous-wave surface-plasma negative ion sources with various discharge geometry. Rev. Sci. Instrum. 85, 02B116 (2014)

    Article  Google Scholar 

  70. Y. Belchenko, A. Sanin, V. Savkin, Study of fluctuations in the CW penning surface-plasma source of negative ions. AIP Conf. Proc. 1390, 401 (2011)

    Article  ADS  Google Scholar 

  71. K.N. Leung, K.W. Ehlers, Self-extraction negative ion source. Rev. Sci. 53, 803 (1982)

    Article  ADS  Google Scholar 

  72. R.L. York, R.R. Stevens Jr., A cusped field H- ion source for LAMPF. IEEE Trans. Nucl. Sci. NS-30(4), 2705 (1983)

    Article  ADS  Google Scholar 

  73. A. Takagi, Y. Mori, K. Ikegami, S. Fukumoto, KEK multicusp negative hydrogen ion source, in PAC 1985, IEEE Trans. Nucl. Sci., vol. NS-32, No. 5 (1985), p. 1782

    Article  ADS  Google Scholar 

  74. A.B. Wengrow, K.N. Leung, M.A. Leitner et al., Development of a high duty factor, surface conversion h-ion source for the lansce facility, in PAC 1997 (1997)

    Google Scholar 

  75. R. Thomae, R. Gough, R. Keller, K. Leung et al., Measurements on the LANSCE upgrade H- source, in Proceedings of the 1999 Particle Accelerator Conference, New York, (1999)

    Google Scholar 

  76. M. Williams, R. Gough, K. Leung et al., Design of ion source for lansce upgrade, in Proceedings of the 1999 Particle Accelerator Conference, New York, (1999)

    Google Scholar 

  77. G.D. Alton, Y. Mori, A. Takagi, A. Ueno, S. Fukumoto, A versatile high intensity plasma sputter heavy negative ion sourcE. Nucl. Instrum. Methods Phys. Res. A270, 194 (1988)

    Article  ADS  Google Scholar 

  78. Y. Mori, G.D. Alton, A. Takagi, A. Ueno, S. Fukumoto, Further evaluation of the high intensity plasma sputter heavy negative ion source. Nucl. Instrum. Methods Phys. Res. A273, 5 (1988)

    Article  ADS  Google Scholar 

  79. G.D. Alton, Y. Mori, A. Takagi, A. Ueno, S. Fukumoto, A high brightness plasma sputter heavy negative ion source. Nucl. Instrum. Methods Phys. Res. B40/41, 1008 (1989)

    Article  ADS  Google Scholar 

  80. R. Middleton, C.N. Adams, Nucl. Instrum. Meth. 118, 329 (1974)

    Article  ADS  Google Scholar 

  81. G. D. Alton, R. Lohwasser, B. Cui et al., A high-intensity, rf plasma-sputter negative ion source (1994).

    Google Scholar 

  82. G.D. Alton, G.D. Mills, J. Dellwo, Design features of a high-intensity, cesium-sputter/plasma-sputter negative ion source. Rev. Sci. Instrum. 65, 2006 (1994)

    Article  ADS  Google Scholar 

  83. H. Tsuji, J. Ishikawa, Y. Gotoh, Y. Okada, RF plasma sputter-type DC‐mode heavy negative ion source. AIP Conf. Proc. 287, 530 (1992)

    Article  ADS  Google Scholar 

  84. O. Koneko, Y. Takieri, K. Tsumori et al., in Proc. 16 Internat. Conf. on Fusion Energy, Montreal, vol. 3 (1996), p. 539

    Google Scholar 

  85. Y. Okumura, M. Hanada, T. Inoue et al., in Proc. 16 Symp. on Fusion Technology, London, vol. 2 (1990), p. 1026

    Google Scholar 

  86. M. Hanada, A. Kojima, T. Inoue, et al., Development of the JT-60SA neutral beam injectors. AIP Conf. Proc. 1396, 536 (2011)

    Article  ADS  Google Scholar 

  87. W. Kraus, M. Bandyopadhyay, H. Falter, et al., Progress in the development of rf driven H and D sources for neutral beam injection. Rev. Sci. Instrum. 75(5), 1832 (2004)

    Article  ADS  Google Scholar 

  88. U. Fantz et al., Plasma Phys. Control. Fusion 49, B563 (2007)

    Article  ADS  Google Scholar 

  89. V. Toigo, R. Piovan, S. Dal Bello et al., The PRIMA Test Facility: SPIDER and MITICA test-beds for ITER neutral beam injectors. New J. Phys. 19, 085004 (2017); G. Chitarin et al., Start of SPIDER operation towards ITER neutral beams. AIP Conf. Proc. 2052, 030001 (2018). https://doi.org/10.1063/1.5083729

  90. G. Abdrashitov, Y. Belchenko, A.A. Ivanov, Negative ion production in the RF surface-plasma source. AIP Conf. Proc. 1515, 197 (2013)

    ADS  Google Scholar 

  91. A. Ivanov, G. Abdrashitov, V. Anashin, Y. Belchenko, A. Burdakov, V. Davydenko, P. Deichuli, G. Dimov, A. Dranichnikov, V. Kapitonov, V. Kolmogorov, A. Kondakov, A. Sanin, I. Shikhovtsev, N. Stupishin, A. Sorokin, S. Popov, M. Tiunov, V. Belov, A. Gorbovsky, V. Kobets, M. Binderbauer, S. Putvinski, A. Smirnov, L. Sevier, Rev. Sci. Instrum. 85, 02B102 (2014). https://doi.org/10.1063/1.4826326

    Article  Google Scholar 

  92. Y. Belchenko, A. Gorbovsky, A. Ivanov, S. Konstantinov, A. Sanin, I. Shikhovtsev, M. Tiunov, AIP Conf. Proc. 1515, 167 (2013). https://doi.org/10.1063/1.4792783

    Article  ADS  Google Scholar 

  93. A.A. Ivanov, G.F. Abdrashitov, V.V. Anashin, et al., Development of a negative ion-based neutral beam injector in Novosibirsk. Rev. Sci. Instrum. 85, 02B102 (2014)

    Article  Google Scholar 

  94. O.Z. Sotnikov, in Studies of Hydrogen Negative Ion Sources for Injector of High Energy Neutrals, PhD thesis (Novosibirsk, 2018); О.З. Сотников, Исследование источника отрицательных ионов водорода для инжектора высокоэнергетичных нейтралов, Кандидатская диссертация (Новосибирск, 2018)

    Google Scholar 

  95. Y. Belchenko, A.A. Ivanov, A. Sanin, O. Sotnikov, in Extracted and Electrode Currents in the Inductively Driven Surface-Plasma Negative Hydrogen Ion Source, NIBS 2016 (Oxford, 2018)

    Google Scholar 

  96. K.N. Leung, G.J. DeVries, W.F. DiVergilio, R.W. Hamm, C.A. Hauck, W.B. Kunkel, D.S. McDonald, M.D. Williams, Rev. Sci. Instrum. 62, 100 (1991)

    Article  ADS  Google Scholar 

  97. K.N. Leung, W.F. DiVergilio, C.A. Hauck, W.B. Kunkel, D.S. McDonald, in Proc. 1991 IEEE Particle Accelerator Conference, San Francisco (May 1991)

    Google Scholar 

  98. K.N. Leung, D.A. Bachman, D.S. McDonald, Production of H ions by an RF driven multicusp source. AIP Conf. Proc. 287, 368 (1992)

    Article  ADS  Google Scholar 

  99. J.R. Alonso, High-current negative-ion sources for pulsed spallation neutron sources: LBNL Workshop, October 1994 (invited). Rev. Sci. Instrum. 67(3), 1308 (1996)

    Article  ADS  Google Scholar 

  100. R. Thomae, P. Bach, R. Gough, J. Greer, R. Keller, K.N. Leung, Measurements on the H- ion source and low energy beam transport section for the SNS front-end system, in XX International Linac Conference, Monterey (2005), p. 233

    Google Scholar 

  101. S.K. Mukherjee, D. Cheng, M.A. Leitner, K.N. Leung, P.A. Luft, R.A. Gough, R. Keller, M.D. Williams, Mechanical design of the prototype h- ion source for the spallation neutron source, in Proceedings of the 1999 Particle Accelerator Conference, New York, report WEA14 (1999)

    Google Scholar 

  102. M.A. Leitner, D.W. Cheng, R.A. Gough, R. Keller, K.N. Leung, S.K. Mukherjee, P.K. Scott, M.D. Williams, High-current, high-duty-factor experiments with the H- ion source for the spallation neutron source, in Proceedings of the 1999 Particle Accelerator Conference, New York (1999)

    Google Scholar 

  103. M.A. Leitner, R.A. Gough, K.N. Leung, M.L. Rickard, P.K. Scott, A.B. Wengrow, M.D. Williams, D.C. Wutte, Development of the radio frequency driven H ion source for the National Spallation Neutron Source. Rev. Sci. Instrum. 69, 962 (1998)

    Article  ADS  Google Scholar 

  104. D.W. Cheng, R.A. Gough, M.D. Hoff, R. Keller, M.A. Leitner, K.N. Leung, J.W. Staples, M.D. Williams, Design of the prototype low energy beam transport line for the spallation neutron source, in Proceedings of the 1999 Particle Accelerator Conference, New York 1958 (1999)

    Google Scholar 

  105. R.F. Welton, M.P. Stockli, S.N. Murray, T.A. Justice, R. Keller, Operation of the SNS ion source at high duty-factor, in Proceedings of EPAC 2004, Lucerne (2004)

    Google Scholar 

  106. R.F. Welton, M.P. Stockli, S.N. Murray, R. Keller, Recent advances in the performance and understanding of the SNS ion source. AIP Conf. Proc. 1515, 292 (2013)

    ADS  Google Scholar 

  107. M.P. Stockli, B. Han, S.N. Murray, et al., Ramping up the Spallation Neutron Source beam power with the H source using 0 mg Cs/day. Rev. Sci. Instrum. 81, 02A729 (2012)

    Article  Google Scholar 

  108. M.P. Stockli, B.X. Han, S.N. Multay, D. Newland, T.R. Pennisi, M. Santana, R.F. Welton, Ramping up the SNS beam power with the LBNL baseline H source, in Negative Ions, Beams and Sources: 1st International Symposium, ed. by E. Surrey, A. Simonin, (American Institute of Physics, 2009), p. 223

    Google Scholar 

  109. M.P. Stockli, B.X. Han, S.N. Murray Jr., T.R. Pennisi, M. Santana, C.M. Stinson, J. Tang, R.F. Welton, Recent performance of and extraction studies with thespallation neutron source H injector. AIP Conf. Proc. 1869, 030010 (2017)

    Article  Google Scholar 

  110. M.P. Stockli, Plasma-wall interactions in the cesiated SNS H ion source, in 26th Summer School and International Symposium on the Physics of Ionized Gases (SPIG2012) IOP Publishing, Journal of Physics: Conference Series, vol. 399 (2012), p. 012001; M.P. Stockli, Pulsed, high-current H- ion sources for future accelerators. p. 144, ICFA Beam Dynamics Newsletter No. 73 Issue Editor: G. Machicoane, P.N. Ostroumov Editor in Chief: Y.H. Chin, icfa-bd.kek.jp/Newsletter73.pdf

    Google Scholar 

  111. V. Dudnikov et al., Carbon film in RF surface plasma source with cesiation, in ICIS 2017, Geneva (2017)

    Google Scholar 

  112. V. Dudnikov, A. Dudnikov et al., Carbon film in radio frequency surface plasma source with cesiation, in NIBS 2018, Novosibirsk (2018)

    Google Scholar 

  113. V. Dudnikov, Carbon film in radio frequency surface plasma source with cesiation, ArXiv, 1808.06003 (2018)

    Google Scholar 

  114. A.Y. Tontegode, E.V. Rut’kov, Usp. Fiz. Nauk 163, 57 (1993); Phys.-Usp. 36, 1053 (1993)

    Article  Google Scholar 

  115. N.R. Gall, E.V. Rut’kov, A.Y. Tontegode, Int. J. Mod. Phys. B 11, 1865 (1997)

    Article  ADS  Google Scholar 

  116. A.Y. Tontegode, Prog. Surf. Sci. 38, 201 (1991)

    Article  ADS  Google Scholar 

  117. J. Algdal, T. Balasubramanianb, M. Breitholtz, T. Kihlgren, L. Walldén, Thin graphite overlayers: graphene and alkali metal intercalation. Surf. Sci. 601, 1167–1175 (2007)

    Article  ADS  Google Scholar 

  118. R. Gutser, C. Wimmer, U. Fantz, Work function measurements during plasma exposition at conditions relevant in negative ion sources for the ITER neutral beam injection. Rev. Sci. Instrum. 82, 023506 (2011)

    Article  ADS  Google Scholar 

  119. R. Schletti, P. Wurz, T. Fröhlich, Rev. Sci. Instrum. 71, 499 (2000)

    Article  ADS  Google Scholar 

  120. V.Z. Kaibyshev, V.A. Koryukin, V.P. Obrezumov, Atom. Energiya 69(3), 196–197 (1990)

    Google Scholar 

  121. G. Cartry, L. Schiesko, C. Hopf, A. Ahmad, M. Carrère, J.M. Layet, P. Kumar, R. Engeln, Production of negative ions on graphite surface in H2/D2 plasmas: experiments and SRIM calculations. Phys. Plasmas 19, 063503 (2012)

    Article  ADS  Google Scholar 

  122. M.A. Gleeson, A.W. Kleyn, Effects of Cs-adsorption on the scattering of low energy hydrogenions from HOPG. Surf. Sci. 420, 174 (1999)

    Article  Google Scholar 

  123. R. Souda, E. Asari, H. Kawanowa, T. Suzuki, S. Otani, Capture and loss of valence electrons during low energy H+ and H scattering from LaB6(100), Cs/Si(100), graphite and LiCl. Surf. Sci. 421, 89 (1999)

    Article  ADS  Google Scholar 

  124. J. Peters, Review of negative hydrogen ion sources high brightness/high current, in Linac 98, Chicago (1998)

    Google Scholar 

  125. R.F. Welton, V.G. Dudnikov, K.R. Gawne, B.X. Han, S.N. Murray, T.R. Pennisi, R.T. Roseberry, M. Santana, M.P. Stockli, M.W. Turvey, H radio frequency source development at the Spallation Neutron Source. Rev. Sci. Instrum. 83, 02A725 (2012)

    Article  Google Scholar 

  126. R.F. Welton, V.G. Dudnikov, B.X. Han, S.N. Murray, T.R. Pennisi, R.T. Roseberry, M. Santana, M.P. Stockli, AIP Conf. Proc. 1515, 341–348 (2013)

    Article  ADS  Google Scholar 

  127. R.F. Welton, A. Aleksandrov, V.G. Dudnikov, B.X. Han, S.N. Murray, T.R. Pennisi, M. Piller, Y. Kang, M. Santana, M.P. Stockli, A look ahead: status of the SNS external antenna ion source and the new RFQ test stand. AIP Conf. Proc. 1655, 030002 (2015)

    Article  Google Scholar 

  128. V. Dudnikov et al., AIP Conf. Proc. 925, 153 (2007)

    Article  ADS  Google Scholar 

  129. V. Dudnikov, R.P. Johnson, M. Stockli, R. Welton, H ion sources for high intensity proton drivers, report MO6RFP036, in Proceedings of PAC09, Vancouver (2009)

    Google Scholar 

  130. D. Curreli, F. Chen, Equilibrium theory of cylindrical discharges with special application to helicons. Phys. Plasmas 18, 113501 (2011)

    Article  ADS  Google Scholar 

  131. V. Dudnikov, B. Han, R.P. Johnson, S.N. Murray, T.R. Pennisi, M. Santana, M.P. Stockli, R.F. Welton, Surface plasma source electrode activation by surface impurities. AIP Conf. Proc. 1390, 411 (2011)

    Article  ADS  Google Scholar 

  132. V. Dudnikov, R.P. Johnson, B. Han, et al., Features of radio frequency surface plasma sources with a solenoidal magnetic field. AIP Conf. Proc. 1869, 030023 (2017)

    Article  Google Scholar 

  133. V. Dudnikov, A. Dudnikov, Radio frequency discharge with control of plasma potential distribution. Rev. Sci. Instrum. 83, 02A720 (2012)

    Article  Google Scholar 

  134. R. Scrivens, M. Kronberger, D. Küchler, J. Lettry et al., Overview of the status and developments on primary ionsources at CERN, report THPS025, in Proceedings of IPAC2011, San Sebastián (2011)

    Google Scholar 

  135. J. Lettry, D. Aguglia, J. Alessi, P. Andersson, et al., CERN’s Linac4 H sources: status and operational results. AIP Conf. Proc. 1655, 030005 (2015)

    Article  Google Scholar 

  136. J. Lettry, S. Bertolo, U. Fantz, et al., Linac4 H source R&D: cusp free ICP and magnetron discharge. AIP Conf. Proc. 2052, 050008 (2018). https://doi.org/10.1063/1.5083762

    Article  Google Scholar 

  137. S. Mochalskyy, J. Lettry, T. Minea, Beam formation in CERNs cesiated surfaces and volume H− ion sources. New J. Phys. 18, 085011 (2016)

    Article  ADS  Google Scholar 

  138. H. Oguri, A. Ueno, K. Ikegami, Y. Namekawa, K. Ohkoshi, Phys. Rev. ST Accel. Beams 12, 010401 (2009)

    Article  ADS  Google Scholar 

  139. A. Ueno, Cesiated surface H ion source: optimization studies. New J. Phys. 19, 015004 (2017)

    Article  ADS  Google Scholar 

  140. A. Ueno et al., How to make extraction electrode current lower than beam and corresponding beam qualities in J-PARC cesiated RF-driven Hˉ ion source 66 mA operation. AIP Conf. Proc. 2011, 050002 (2018)

    Article  Google Scholar 

  141. A. Ueno et al., Beam intensity bottleneck specification and 100 mA operation of J-PARC cesiated RF-driven H¯ ion source, in NIBS 2018, Novosibirsk (2018)

    Google Scholar 

  142. V.G. Dudnikov, G.I. Fiksel, Surface plasma source of hydrogen atoms with an energy of hundreds eV. J. Phys. 40, C7-479 (1979)

    Google Scholar 

  143. V. Dudnikov, G. Fiksel, Surface plasma source of intense flux of accelerated atoms, preprint INP 80-44 (Novosibirsk, 1980); В. Дудников, Г. Фиксель, Поверхностно-плазменный источник интенсивных потоков ускоренных атомов, Препринт ИЯФ 80-44 (Новосибирск, 1980)

    Google Scholar 

  144. V. Dudnikov, G. Fiksel, Fisika Plasmy 7, 283–288 (1981)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dudnikov, V. (2019). Surface Plasma Negative Ion Sources. In: Development and Applications of Negative Ion Sources. Springer Series on Atomic, Optical, and Plasma Physics, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-030-28437-4_5

Download citation

Publish with us

Policies and ethics