Skip to main content

The RPE in Myopia Development

  • Chapter
  • First Online:
Retinal Pigment Epithelium in Health and Disease

Abstract

Myopia is one of the most common types of refractive errors and a major cause of visual impairment worldwide. Most myopia is the product of excessive elongation of the vitreous chamber, which largely accounts for increases in eye length and uncorrected blurred distance vision. Myopia also carries an increased risk of blinding pathologies, including retinal detachment and myopic maculopathy, with no evidence of a safe level of myopia. Changes in the retinal pigment epithelium (RPE) have also been observed in myopic patients with excessively large eyes. The role of RPE in eye growth regulation and refractive development has been the subject of more recent investigations, in both animal models and in vitro cell cultures. Due to the key location and complex functions of RPE, it likely serves as a relay or conduit for retina-derived growth modulatory signals directed at the choroid and sclera, which ultimately determine vitreous chamber depth and thus overall eye length. This chapter summarizes results of recent RPE studies, including RPE-derived growth factors, neurotransmitters and their receptors, ion channels, and RPE morphological changes in the context of eye growth regulation and myopia development. Understanding the role of RPE in eye growth regulation holds promise of significant new insights into the mechanisms underlying the development of refractive errors, opening the possibility of novel therapeutic approaches to myopia control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bourne RR, Stevens GA, White RA, Smith JL, Flaxman SR, Price H, Jonas JB, Keeffe J, Leasher J, Naidoo K, Pesudovs K, Resnikoff S, Taylor HR. Causes of vision loss worldwide, 1990-2010: a systematic analysis. Lancet Glob Health. 2013;1(6):e339–49.

    Article  PubMed  Google Scholar 

  2. Ono K, Hiratsuka Y, Murakami A. Global inequality in eye health: country-level analysis from the Global Burden of Disease Study. Am J Public Health. 2010;100(9):1784–8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96(5):614–8.

    Article  PubMed  Google Scholar 

  4. Curtin BJ, editor. The myopias: basic science and clinical management. Philadelphia: Harper & Row Publishers; 1985.

    Google Scholar 

  5. Whitmore WG. Congenital and developmental myopia. Eye (Lond). 1992;6(Pt 4):361–5.

    Article  Google Scholar 

  6. McBrien NA, Millodot M. A biometric investigation of late onset myopic eyes. Acta Ophthalmol. 1987;65(4):461–8.

    Article  CAS  Google Scholar 

  7. Flitcroft DI. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog Retin Eye Res. 2012;31(6):622–60.

    Article  CAS  PubMed  Google Scholar 

  8. Holden BA, Jong M, Davis S, Wilson D, Fricke T, Resnikoff S. Nearly 1 billion myopes at risk of myopia-related sight-threatening conditions by 2050—time to act now. Clin Exp Optom. 2015;98(6):491–3.

    Article  PubMed  Google Scholar 

  9. Dolgin E. The myopia boom. Nature. 2015;519(7543):276–8.

    Article  CAS  PubMed  Google Scholar 

  10. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, Wong TY, Naduvilath TJ, Resnikoff S. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–42.

    Article  PubMed  Google Scholar 

  11. Jung SK, Lee JH, Kakizaki H, Jee D. Prevalence of myopia and its association with body stature and educational level in 19-year-old male conscripts in Seoul, South Korea. Invest Ophthalmol Vis Sci. 2012;53(9):5579–83.

    Article  PubMed  Google Scholar 

  12. Vitale S, Sperduto RD, Ferris FL 3rd. Increased prevalence of myopia in the United States between 1971-1972 and 1999-2004. Arch Ophthalmol. 2009;127(12):1632–9.

    Article  PubMed  Google Scholar 

  13. Pan CW, Ramamurthy D, Saw SM. Worldwide prevalence and risk factors for myopia. Ophthalmic Physiol Opt. 2012;32(1):3–16.

    Article  PubMed  Google Scholar 

  14. Wu PC, Huang HM, Yu HJ, Fang PC, Chen CT. Epidemiology of myopia. Asia Pac J Ophthalmol (Phila). 2016;5(6):386–93.

    Article  Google Scholar 

  15. Rose K, Smith W, Morgan I, Mitchell P. The increasing prevalence of myopia: implications for Australia. Clin Exp Ophthalmol. 2001;29(3):116–20.

    Article  CAS  PubMed  Google Scholar 

  16. Fricke TR, Holden BA, Wilson DA, Schlenther G, Naidoo KS, Resnikoff S, Frick KD. Global cost of correcting vision impairment from uncorrected refractive error. Bull World Health Organ. 2012;90(10):728–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Holden B, Sankaridurg P, Smith E, Aller T, Jong M, He M. Myopia, an underrated global challenge to vision: where the current data takes us on myopia control. Eye (Lond). 2014;28(2):142–6.

    Article  CAS  Google Scholar 

  18. Ramamurthy D, Lin Chua SY, Saw SM. A review of environmental risk factors for myopia during early life, childhood and adolescence. Clin Exp Optom. 2015;98(6):497–506.

    Article  PubMed  Google Scholar 

  19. Wallman J, Winawer J. Homeostasis of eye growth and the question of myopia. Neuron. 2004;43(4):447–68.

    Article  CAS  PubMed  Google Scholar 

  20. Wojciechowski R. Nature and nurture: the complex genetics of myopia and refractive error. Clin Genet. 2011;79(4):301–20.

    Article  CAS  PubMed  Google Scholar 

  21. Wojciechowski R, Cheng CY. Involvement of multiple molecular pathways in the genetics of ocular refraction and myopia. Retina. 2018;38(1):91–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Young TL, Metlapally R, Shay AE. Complex trait genetics of refractive error. Arch Ophthalmol. 2007;125(1):38–48.

    Article  CAS  PubMed  Google Scholar 

  23. Fan Q, Verhoeven VJ, Wojciechowski R, Barathi VA, Hysi PG, Guggenheim JA, Hohn R, Vitart V, Khawaja AP, Yamashiro K, Hosseini SM, Lehtimaki T, Lu Y, Haller T, Xie J, Delcourt C, Pirastu M, Wedenoja J, Gharahkhani P, Venturini C, Miyake M, Hewitt AW, Guo X, Mazur J, Huffman JE, Williams KM, Polasek O, Campbell H, Rudan I, Vatavuk Z, Wilson JF, Joshi PK, McMahon G, St Pourcain B, Evans DM, Simpson CL, Schwantes-An TH, Igo RP, Mirshahi A, Cougnard-Gregoire A, Bellenguez C, Blettner M, Raitakari O, Kahonen M, Seppala I, Zeller T, Meitinger T, Ried JS, Gieger C, Portas L, van Leeuwen EM, Amin N, Uitterlinden AG, Rivadeneira F, Hofman A, Vingerling JR, Wang YX, Wang X, Tai-Hui Boh E, Ikram MK, Sabanayagam C, Gupta P, Tan V, Zhou L, Ho CE, Lim W, Beuerman RW, Siantar R, Tai ES, Vithana E, Mihailov E, Khor CC, Hayward C, Luben RN, Foster PJ, Klein BE, Klein R, Wong HS, Mitchell P, Metspalu A, Aung T, Young TL, He M, Parssinen O, van Duijn CM, Jin Wang J, Williams C, Jonas JB, Teo YY, Mackey DA, Oexle K, Yoshimura N, Paterson AD, Pfeiffer N, Wong TY, Baird PN, Stambolian D, Wilson JE, Cheng CY, Hammond CJ, Klaver CC, Saw SM, Rahi JS, Korobelnik JF, Kemp JP, Timpson NJ, Smith GD, Craig JE, Burdon KP, Fogarty RD, Iyengar SK, Chew E, Janmahasatian S, Martin NG, MacGregor S, Xu L, Schache M, Nangia V, Panda-Jonas S, Wright AF, Fondran JR, Lass JH, Feng S, Zhao JH, Khaw KT, Wareham NJ, Rantanen T, Kaprio J, Pang CP, Chen LJ, Tam PO, Jhanji V, Young AL, Doring A, Raffel LJ, Cotch MF, Li X, Yip SP, Yap MK, Biino G, Vaccargiu S, Fossarello M, Fleck B, Yazar S, Tideman JW, Tedja M, Deangelis MM, Morrison M, Farrer L, Zhou X, Chen W, Mizuki N, Meguro A, Makela KM. Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error. Nat Commun. 2016;7:11008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hysi PG, Young TL, Mackey DA, Andrew T, Fernandez-Medarde A, Solouki AM, Hewitt AW, Macgregor S, Vingerling JR, Li YJ, Ikram MK, Fai LY, Sham PC, Manyes L, Porteros A, Lopes MC, Carbonaro F, Fahy SJ, Martin NG, van Duijn CM, Spector TD, Rahi JS, Santos E, Klaver CC, Hammond CJ. A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25. Nat Genet. 2010;42(10):902–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Verhoeven VJ, Hysi PG, Wojciechowski R, Fan Q, Guggenheim JA, Hohn R, MacGregor S, Hewitt AW, Nag A, Cheng CY, Yonova-Doing E, Zhou X, Ikram MK, Buitendijk GH, McMahon G, Kemp JP, Pourcain BS, Simpson CL, Makela KM, Lehtimaki T, Kahonen M, Paterson AD, Hosseini SM, Wong HS, Xu L, Jonas JB, Parssinen O, Wedenoja J, Yip SP, Ho DW, Pang CP, Chen LJ, Burdon KP, Craig JE, Klein BE, Klein R, Haller T, Metspalu A, Khor CC, Tai ES, Aung T, Vithana E, Tay WT, Barathi VA, Chen P, Li R, Liao J, Zheng Y, Ong RT, Doring A, Evans DM, Timpson NJ, Verkerk AJ, Meitinger T, Raitakari O, Hawthorne F, Spector TD, Karssen LC, Pirastu M, Murgia F, Ang W, Mishra A, Montgomery GW, Pennell CE, Cumberland PM, Cotlarciuc I, Mitchell P, Wang JJ, Schache M, Janmahasatian S, Igo RP Jr, Lass JH, Chew E, Iyengar SK, Gorgels TG, Rudan I, Hayward C, Wright AF, Polasek O, Vatavuk Z, Wilson JF, Fleck B, Zeller T, Mirshahi A, Muller C, Uitterlinden AG, Rivadeneira F, Vingerling JR, Hofman A, Oostra BA, Amin N, Bergen AA, Teo YY, Rahi JS, Vitart V, Williams C, Baird PN, Wong TY, Oexle K, Pfeiffer N, Mackey DA, Young TL, van Duijn CM, Saw SM, Bailey-Wilson JE, Stambolian D, Klaver CC, Hammond CJ. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nat Genet. 2013;45(3):314–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hysi PG, Wojciechowski R, Rahi JS, Hammond CJ. Genome-wide association studies of refractive error and myopia, lessons learned, and implications for the future. Invest Ophthalmol Vis Sci. 2014;55(5):3344–51.

    Article  PubMed  PubMed Central  Google Scholar 

  27. He M, Xiang F, Zeng Y, Mai J, Chen Q, Zhang J, Smith W, Rose K, Morgan IG. Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA. 2015;314(11):1142–8.

    Article  CAS  PubMed  Google Scholar 

  28. Huang HM, Chang DS, Wu PC. The association between near work activities and myopia in children-a systematic review and meta-analysis. PLoS One. 2015;10(10):e0140419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rose KA, Morgan IG, Ip J, Kifley A, Huynh S, Smith W, Mitchell P. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology. 2008;115(8):1279–85.

    Article  PubMed  Google Scholar 

  30. Sherwin JC, Reacher MH, Keogh RH, Khawaja AP, Mackey DA, Foster PJ. The association between time spent outdoors and myopia in children and adolescents: a systematic review and meta-analysis. Ophthalmology. 2012;119(10):2141–51.

    Article  PubMed  Google Scholar 

  31. Leo SW. Current approaches to myopia control. Curr Opin Ophthalmol. 2017;28(3):267–75.

    Article  PubMed  Google Scholar 

  32. Walline JJ, Lindsley K, Vedula SS, Cotter SA, Mutti DO, Twelker JD. Interventions to slow progression of myopia in children. Cochrane Database Syst Rev. 2011;(12):CD004916.

    Google Scholar 

  33. Aller TA, Liu M, Wildsoet CF. Myopia control with bifocal contact lenses: a randomized clinical trial. Optom Vis Sci. 2016;93(4):344–52.

    Article  PubMed  Google Scholar 

  34. Cheng D, Woo GC, Schmid KL. Bifocal lens control of myopic progression in children. Clin Exp Optom. 2011;94(1):24–32.

    Article  PubMed  Google Scholar 

  35. Cho P, Cheung SW. Protective role of orthokeratology in reducing risk of rapid axial elongation: a reanalysis of data from the ROMIO and TO-SEE studies. Invest Ophthalmol Vis Sci. 2017;58(3):1411–6.

    Article  PubMed  Google Scholar 

  36. Swarbrick HA, Alharbi A, Watt K, Lum E, Kang P. Myopia control during orthokeratology lens wear in children using a novel study design. Ophthalmology. 2015;122(3):620–30.

    Article  PubMed  Google Scholar 

  37. Walline JJ, Jones LA, Sinnott LT. Corneal reshaping and myopia progression. Br J Ophthalmol. 2009;93(9):1181–5.

    Article  CAS  PubMed  Google Scholar 

  38. Chia A, Chua WH, Cheung YB, Wong WL, Lingham A, Fong A, Tan D. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the Treatment of Myopia 2). Ophthalmology. 2012;119(2):347–54.

    Article  PubMed  Google Scholar 

  39. Siatkowski RM, Cotter SA, Crockett RS, Miller JM, Novack GD, Zadnik K. Two-year multicenter, randomized, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia. J AAPOS. 2008;12(4):332–9.

    Article  PubMed  Google Scholar 

  40. Tan DT, Lam DS, Chua WH, Shu-Ping DF, Crockett RS. One-year multicenter, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia. Ophthalmology. 2005;112(1):84–91.

    Article  PubMed  Google Scholar 

  41. Tran HDM, Tran YH, Tran TD, Jong M, Coroneo M, Sankaridurg P. A review of myopia control with atropine. J Ocul Pharmacol Ther. 2018;34(5):374–9.

    Article  CAS  PubMed  Google Scholar 

  42. Yam JC, Jiang Y, Tang SM, Law AKP, Chan JJ, Wong E, Ko ST, Young AL, Tham CC, Chen LJ, Pang CP. Low-concentration atropine for myopia progression (LAMP) study: a randomized, double-blinded, placebo-controlled trial of 0.05%, 0.025%, and 0.01% atropine eye drops in myopia control. Ophthalmology. 2019;126(1):113–24.

    Article  PubMed  Google Scholar 

  43. Trier K, Munk Ribel-Madsen S, Cui D, Brogger Christensen S. Systemic 7-methylxanthine in retarding axial eye growth and myopia progression: a 36-month pilot study. J Ocul Biol Dis Infor. 2008;1(2–4):85–93.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu HH, Xu L, Wang YX, Wang S, You QS, Jonas JB. Prevalence and progression of myopic retinopathy in Chinese adults: the Beijing Eye Study. Ophthalmology. 2010;117(9):1763–8.

    Article  PubMed  Google Scholar 

  45. Ohno-Matsui K, Lai TY, Lai CC, Cheung CM. Updates of pathologic myopia. Prog Retin Eye Res. 2016;52:156–87.

    Article  PubMed  Google Scholar 

  46. Vongphanit J, Mitchell P, Wang JJ. Prevalence and progression of myopic retinopathy in an older population. Ophthalmology. 2002;109(4):704–11.

    Article  PubMed  Google Scholar 

  47. Ohno-Matsui K, Jonas JB, Spaide RF. Macular Bruch membrane holes in highly myopic patchy chorioretinal atrophy. Am J Ophthalmol. 2016;166:22–8.

    Article  PubMed  Google Scholar 

  48. Jonas JB, Xu L. Histological changes of high axial myopia. Eye (Lond). 2014;28(2):113–7.

    Article  CAS  Google Scholar 

  49. Jonas JB, Ohno-Matsui K, Holbach L, Panda-Jonas S. Retinal pigment epithelium cell density in relationship to axial length in human eyes. Acta Ophthalmol. 2017;95(1):e22–8.

    Article  PubMed  Google Scholar 

  50. Shin YJ, Nam WH, Park SE, Kim JH, Kim HK. Aqueous humor concentrations of vascular endothelial growth factor and pigment epithelium-derived factor in high myopic patients. Mol Vis. 2012;18:2265–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhuang H, Zhang R, Shu Q, Jiang R, Chang Q, Huang X, Jiang C, Xu G. Changes of TGF-beta2, MMP-2, and TIMP-2 levels in the vitreous of patients with high myopia. Graefes Arch Clin Exp Ophthalmol. 2014;252(11):1763–7.

    Article  CAS  PubMed  Google Scholar 

  52. Pardue MT, Faulkner AE, Fernandes A, Yin H, Schaeffel F, Williams RW, Pozdeyev N, Iuvone PM. High susceptibility to experimental myopia in a mouse model with a retinal on pathway defect. Invest Ophthalmol Vis Sci. 2008;49(2):706–12.

    Article  PubMed  Google Scholar 

  53. Schaeffel F, Burkhardt E, Howland HC, Williams RW. Measurement of refractive state and deprivation myopia in two strains of mice. Optom Vis Sci. 2004;81(2):99–110.

    Article  PubMed  Google Scholar 

  54. Sherman SM, Norton TT, Casagrande VA. Myopia in the lid-sutured tree shrew (Tupaia glis). Brain Res. 1977;124(1):154–7.

    Article  CAS  PubMed  Google Scholar 

  55. Troilo D, Judge SJ. Ocular development and visual deprivation myopia in the common marmoset (Callithrix jacchus). Vis Res. 1993;33(10):1311–24.

    Article  CAS  PubMed  Google Scholar 

  56. Troilo D, Wallman J. The regulation of eye growth and refractive state: an experimental study of emmetropization. Vis Res. 1991;31(7–8):1237–50.

    Article  CAS  PubMed  Google Scholar 

  57. Veth KN, Willer JR, Collery RF, Gray MP, Willer GB, Wagner DS, Mullins MC, Udvadia AJ, Smith RS, John SW, Gregg RG, Link BA. Mutations in zebrafish lrp2 result in adult-onset ocular pathogenesis that models myopia and other risk factors for glaucoma. PLoS Genet. 2011;7(2):e1001310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wiesel TN, Raviola E. Myopia and eye enlargement after neonatal lid fusion in monkeys. Nature. 1977;266(5597):66–8.

    Article  CAS  PubMed  Google Scholar 

  59. Wildsoet CF, Pettigrew JD. Kainic acid-induced eye enlargement in chickens: differential effects on anterior and posterior segments. Invest Ophthalmol Vis Sci. 1988;29(2):311–9.

    CAS  PubMed  Google Scholar 

  60. Diether S, Schaeffel F. Local changes in eye growth induced by imposed local refractive error despite active accommodation. Vis Res. 1997;37(6):659–68.

    Article  CAS  PubMed  Google Scholar 

  61. Hodos W, Kuenzel WJ. Retinal-image degradation produces ocular enlargement in chicks. Invest Ophthalmol Vis Sci. 1984;25(6):652–9.

    CAS  PubMed  Google Scholar 

  62. Norton TT, Essinger JA, McBrien NA. Lid-suture myopia in tree shrews with retinal ganglion cell blockade. Vis Neurosci. 1994;11(1):143–53.

    Article  CAS  PubMed  Google Scholar 

  63. Troilo D, Gottlieb MD, Wallman J. Visual deprivation causes myopia in chicks with optic nerve section. Curr Eye Res. 1987;6(8):993–9.

    Article  CAS  PubMed  Google Scholar 

  64. Wallman J, Gottlieb MD, Rajaram V, Fugate-Wentzek LA. Local retinal regions control local eye growth and myopia. Science. 1987;237(4810):73–7.

    Article  CAS  PubMed  Google Scholar 

  65. Wildsoet C. Neural pathways subserving negative lens-induced emmetropization in chicks—insights from selective lesions of the optic nerve and ciliary nerve. Curr Eye Res. 2003;27(6):371–85.

    Article  PubMed  Google Scholar 

  66. Wildsoet C, Wallman J. Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks. Vis Res. 1995;35(9):1175–94.

    Article  CAS  PubMed  Google Scholar 

  67. Wildsoet CF, Pettigrew J. Experimental myopia and anomalous eye growth patterns unaffected by optic nerve section in chickens: evidence for local control of eye growth. Clin Vis Sci. 1988;3:99–107.

    Google Scholar 

  68. Smith EL 3rd, Hung LF, Huang J, Arumugam B. Effects of local myopic defocus on refractive development in monkeys. Optom Vis Sci. 2013;90(11):1176–86.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Crewther DP. The role of photoreceptors in the control of refractive state. Prog Retin Eye Res. 2000;19(4):421–57.

    Article  CAS  PubMed  Google Scholar 

  70. Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29(2):144–68.

    Article  PubMed  Google Scholar 

  71. Rada JA, Shelton S, Norton TT. The sclera and myopia. Exp Eye Res. 2006;82(2):185–200.

    Article  CAS  PubMed  Google Scholar 

  72. Rymer J, Wildsoet CF. The role of the retinal pigment epithelium in eye growth regulation and myopia: a review. Vis Neurosci. 2005;22(3):251–61.

    Article  PubMed  Google Scholar 

  73. Stone RA, Khurana TS. Gene profiling in experimental models of eye growth: clues to myopia pathogenesis. Vis Res. 2010;50(23):2322–33.

    Article  CAS  PubMed  Google Scholar 

  74. Pfeffer BA, Flanders KC, Guerin CJ, Danielpour D, Anderson DH. Transforming growth factor beta 2 is the predominant isoform in the neural retina, retinal pigment epithelium-choroid and vitreous of the monkey eye. Exp Eye Res. 1994;59(3):323–33.

    Article  CAS  PubMed  Google Scholar 

  75. Reichhart N, Strauss O. Ion channels and transporters of the retinal pigment epithelium. Exp Eye Res. 2014;126:27–37.

    Article  CAS  PubMed  Google Scholar 

  76. Rizzolo LJ, Peng S, Luo Y, Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Prog Retin Eye Res. 2011;30(5):296–323.

    Article  CAS  PubMed  Google Scholar 

  77. Saint-Geniez M, Kurihara T, Sekiyama E, Maldonado AE, D’Amore PA. An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proc Natl Acad Sci U S A. 2009;106(44):18751–6.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tanihara H, Inatani M, Honda Y. Growth factors and their receptors in the retina and pigment epithelium. Prog Retin Eye Res. 1997;16:271–301.

    Article  CAS  Google Scholar 

  79. Blaauwgeers HG, Holtkamp GM, Rutten H, Witmer AN, Koolwijk P, Partanen TA, Alitalo K, Kroon ME, Kijlstra A, van Hinsbergh VW, Schlingemann RO. Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation. Am J Pathol. 1999;155(2):421–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Marmor M, Wolfensberger T, editors. The retinal pigment epithelium: function and disease. New York: Oxford University Press; 1998.

    Google Scholar 

  81. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85(3):845–81.

    Article  CAS  PubMed  Google Scholar 

  82. Becerra SP, Fariss RN, Wu YQ, Montuenga LM, Wong P, Pfeffer BA. Pigment epithelium-derived factor in the monkey retinal pigment epithelium and interphotoreceptor matrix: apical secretion and distribution. Exp Eye Res. 2004;78(2):223–34.

    Article  CAS  PubMed  Google Scholar 

  83. Hirsch L, Nazari H, Sreekumar PG, Kannan R, Dustin L, Zhu D, Barron E, Hinton DR. TGF-beta2 secretion from RPE decreases with polarization and becomes apically oriented. Cytokine. 2015;71(2):394–6.

    Article  CAS  PubMed  Google Scholar 

  84. Wang Y, Subramanian P, Shen D, Tuo J, Becerra SP, Chan CC. Pigment epithelium-derived factor reduces apoptosis and pro-inflammatory cytokine gene expression in a murine model of focal retinal degeneration. ASN Neuro. 2013;5(5):e00126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Byeon SH, Lee SC, Choi SH, Lee HK, Lee JH, Chu YK, Kwon OW. Vascular endothelial growth factor as an autocrine survival factor for retinal pigment epithelial cells under oxidative stress via the VEGF-R2/PI3K/Akt. Invest Ophthalmol Vis Sci. 2010;51(2):1190–7.

    Article  PubMed  Google Scholar 

  86. Campochiaro PA, Hackett SF, Vinores SA, Freund J, Csaky C, LaRochelle W, Henderer J, Johnson M, Rodriguez IR, Friedman Z, et al. Platelet-derived growth factor is an autocrine growth stimulator in retinal pigmented epithelial cells. J Cell Sci. 1994;107(Pt 9):2459–69.

    CAS  PubMed  Google Scholar 

  87. Obata H, Kaji Y, Yamada H, Kato M, Tsuru T, Yamashita H. Expression of transforming growth factor-beta superfamily receptors in rat eyes. Acta Ophthalmol Scand. 1999;77(2):151–6.

    Article  CAS  PubMed  Google Scholar 

  88. Mathura JR Jr, Jafari N, Chang JT, Hackett SF, Wahlin KJ, Della NG, Okamoto N, Zack DJ, Campochiaro PA. Bone morphogenetic proteins-2 and -4: negative growth regulators in adult retinal pigmented epithelium. Invest Ophthalmol Vis Sci. 2000;41(2):592–600.

    PubMed  Google Scholar 

  89. Matsumoto M, Yoshimura N, Honda Y. Increased production of transforming growth factor-beta 2 from cultured human retinal pigment epithelial cells by photocoagulation. Invest Ophthalmol Vis Sci. 1994;35(13):4245–52.

    Google Scholar 

  90. Akhurst RJ, Hata A. Targeting the TGFbeta signalling pathway in disease. Nat Rev Drug Discov. 2012;11(10):790–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;13(10):616–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T, Springer TA. Latent TGF-beta structure and activation. Nature. 2011;474(7351):343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jenkins G. The role of proteases in transforming growth factor-beta activation. Int J Biochem Cell Biol. 2008;40(6–7):1068–78.

    Article  CAS  PubMed  Google Scholar 

  94. Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, Pittet JF, Kaminski N, Garat C, Matthay MA, Rifkin DB, Sheppard D. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell. 1999;96(3):319–28.

    Article  CAS  PubMed  Google Scholar 

  95. Schultz-Cherry S, Ribeiro S, Gentry L, Murphy-Ullrich JE. Thrombospondin binds and activates the small and large forms of latent transforming growth factor-beta in a chemically defined system. J Biol Chem. 1994;269(43):26775–82.

    CAS  PubMed  Google Scholar 

  96. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113(6):685–700.

    Article  CAS  PubMed  Google Scholar 

  97. Gao H, Frost MR, Siegwart JT Jr, Norton TT. Patterns of mRNA and protein expression during minus-lens compensation and recovery in tree shrew sclera. Mol Vis. 2011;17:903–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Guo L, Frost MR, He L, Siegwart JT Jr, Norton TT. Gene expression signatures in tree shrew sclera in response to three myopiagenic conditions. Invest Ophthalmol Vis Sci. 2013;54(10):6806–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. He L, Frost MR, Siegwart JT Jr, Norton TT. Gene expression signatures in tree shrew choroid in response to three myopiagenic conditions. Vis Res. 2014;102:52–63.

    Article  PubMed  Google Scholar 

  100. Honda S, Fujii S, Sekiya Y, Yamamoto M. Retinal control on the axial length mediated by transforming growth factor-beta in chick eye. Invest Ophthalmol Vis Sci. 1996;37(12):2519–26.

    CAS  PubMed  Google Scholar 

  101. Jobling AI, Nguyen M, Gentle A, McBrien NA. Isoform-specific changes in scleral transforming growth factor-beta expression and the regulation of collagen synthesis during myopia progression. J Biol Chem. 2004;279(18):18121–6.

    Article  CAS  PubMed  Google Scholar 

  102. Jobling AI, Wan R, Gentle A, Bui BV, McBrien NA. Retinal and choroidal TGF-beta in the tree shrew model of myopia: isoform expression, activation and effects on function. Exp Eye Res. 2009;88(3):458–66.

    Article  CAS  PubMed  Google Scholar 

  103. Kusakari T, Sato T, Tokoro T. Visual deprivation stimulates the exchange of the fibrous sclera into the cartilaginous sclera in chicks. Exp Eye Res. 2001;73(4):533–46.

    Article  CAS  PubMed  Google Scholar 

  104. Mathis U, Schaeffel F. Transforming growth factor-beta in the chicken fundal layers: an immunohistochemical study. Exp Eye Res. 2010;90(6):780–90.

    Article  CAS  PubMed  Google Scholar 

  105. McBrien NA. Regulation of scleral metabolism in myopia and the role of transforming growth factor-beta. Exp Eye Res. 2013;114:128–40.

    Article  CAS  PubMed  Google Scholar 

  106. Schippert R, Brand C, Schaeffel F, Feldkaemper MP. Changes in scleral MMP-2, TIMP-2 and TGFbeta-2 mRNA expression after imposed myopic and hyperopic defocus in chickens. Exp Eye Res. 2006;82(4):710–9.

    Article  CAS  PubMed  Google Scholar 

  107. Seko Y, Shimokawa H, Tokoro T. Expression of bFGF and TGF-beta 2 in experimental myopia in chicks. Invest Ophthalmol Vis Sci. 1995;36(6):1183–7.

    CAS  PubMed  Google Scholar 

  108. Simon P, Feldkaemper M, Bitzer M, Ohngemach S, Schaeffel F. Early transcriptional changes of retinal and choroidal TGFbeta-2, RALDH-2, and ZENK following imposed positive and negative defocus in chickens. Mol Vis. 2004;10:588–97.

    CAS  PubMed  Google Scholar 

  109. Zhang Y, Raychaudhuri S, Wildsoet CF. Imposed optical defocus induces isoform-specific up-regulation of TGFbeta gene expression in chick retinal pigment epithelium and choroid but not neural retina. PLoS One. 2016;11(5):e0155356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen BY, Wang CY, Chen WY, Ma JX. Altered TGF-beta2 and bFGF expression in scleral desmocytes from an experimentally-induced myopia guinea pig model. Graefes Arch Clin Exp Ophthalmol. 2013;251(4):1133–44.

    Article  CAS  PubMed  Google Scholar 

  111. Jobling AI, Gentle A, Metlapally R, McGowan BJ, McBrien NA. Regulation of scleral cell contraction by transforming growth factor-beta and stress: competing roles in myopic eye growth. J Biol Chem. 2009;284(4):2072–9.

    Article  CAS  PubMed  Google Scholar 

  112. Seko Y, Tanaka Y, Tokoro T. Influence of bFGF as a potent growth stimulator and TGF-beta as a growth regulator on scleral chondrocytes and scleral fibroblasts in vitro. Ophthalmic Res. 1995;27(3):144–52.

    Article  CAS  PubMed  Google Scholar 

  113. Rohrer B, Stell WK. Basic fibroblast growth factor (bFGF) and transforming growth factor beta (TGF-beta) act as stop and go signals to modulate postnatal ocular growth in the chick. Exp Eye Res. 1994;58(5):553–61.

    Article  CAS  PubMed  Google Scholar 

  114. He L, Frost MR, Siegwart JT Jr, Norton TT. Altered gene expression in tree shrew retina and retinal pigment epithelium produced by short periods of minus-lens wear. Exp Eye Res. 2018;168:77–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Shelton L, Troilo D, Lerner MR, Gusev Y, Brackett DJ, Rada JS. Microarray analysis of choroid/RPE gene expression in marmoset eyes undergoing changes in ocular growth and refraction. Mol Vis. 2008;14:1465–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Carreira AC, Alves GG, Zambuzzi WF, Sogayar MC, Granjeiro JM. Bone morphogenetic proteins: structure, biological function and therapeutic applications. Arch Biochem Biophys. 2014;561:64–73.

    Article  CAS  PubMed  Google Scholar 

  117. Kawabata M, Imamura T, Miyazono K. Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev. 1998;9(1):49–61.

    Article  CAS  PubMed  Google Scholar 

  118. Katagiri T, Watabe T. Bone morphogenetic proteins. Cold Spring Harb Perspect Biol. 2016;8(6):a021899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Urist MR. Bone: formation by autoinduction. Science. 1965;150(3698):893–9.

    Article  CAS  PubMed  Google Scholar 

  120. Wagner DO, Sieber C, Bhushan R, Borgermann JH, Graf D, Knaus P. BMPs: from bone to body morphogenetic proteins. Sci Signal. 2010;3(107):mr1.

    PubMed  Google Scholar 

  121. Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, Zhang Q, Ye J, Yan Z, Denduluri S, Idowu O, Li M, Shen C, Hu A, Haydon RC, Kang R, Mok J, Lee MJ, Luu HL, Shi LL. Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis. 2014;1(1):87–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xu J, Zhu D, Sonoda S, He S, Spee C, Ryan SJ, Hinton DR. Over-expression of BMP4 inhibits experimental choroidal neovascularization by modulating VEGF and MMP-9. Angiogenesis. 2012;15(2):213–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang J, Li L. BMP signaling and stem cell regulation. Dev Biol. 2005;284(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  124. Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A. Bone morphogenetic proteins: a critical review. Cell Signal. 2011;23(4):609–20.

    Article  CAS  PubMed  Google Scholar 

  125. Belecky-Adams T, Adler R. Developmental expression patterns of bone morphogenetic proteins, receptors, and binding proteins in the chick retina. J Comp Neurol. 2001;430(4):562–72.

    Article  CAS  PubMed  Google Scholar 

  126. Faber SC, Robinson ML, Makarenkova HP, Lang RA. Bmp signaling is required for development of primary lens fiber cells. Development. 2002;129(15):3727–37.

    CAS  PubMed  Google Scholar 

  127. Fuhrmann S. Eye morphogenesis and patterning of the optic vesicle. Curr Top Dev Biol. 2010;93:61–84.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Furuta Y, Hogan BL. BMP4 is essential for lens induction in the mouse embryo. Genes Dev. 1998;12(23):3764–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev. 1995;9(22):2808–20.

    Article  CAS  PubMed  Google Scholar 

  130. Moshiri A, Close J, Reh TA. Retinal stem cells and regeneration. Int J Dev Biol. 2004;48(8–9):1003–14.

    Article  PubMed  Google Scholar 

  131. Sakuta H, Takahashi H, Shintani T, Etani K, Aoshima A, Noda M. Role of bone morphogenic protein 2 in retinal patterning and retinotectal projection. J Neurosci. 2006;26(42):10868–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Steinfeld J, Steinfeld I, Bausch A, Coronato N, Hampel ML, Depner H, Layer PG, Vogel-Hopker A. BMP-induced reprograming of the retina into RPE requires WNT signalling in the developing chick optic cup. Biol Open. 2017;6(7):979–92. https://doi.org/10.1242/bio.018739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Steinfeld J, Steinfeld I, Coronato N, Hampel ML, Layer PG, Araki M, Vogel-Hopker A. RPE specification in the chick is mediated by surface ectoderm-derived BMP and Wnt signalling. Development. 2013;140(24):4959–69.

    Article  CAS  PubMed  Google Scholar 

  134. Ueki Y, Wilken MS, Cox KE, Chipman LB, Bermingham-McDonogh O, Reh TA. A transient wave of BMP signaling in the retina is necessary for Muller glial differentiation. Development. 2015;142(3):533–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wordinger RJ, Clark AF. Bone morphogenetic proteins and their receptors in the eye. Exp Biol Med (Maywood). 2007;232(8):979–92.

    Article  CAS  Google Scholar 

  136. Zhou S, Flamier A, Abdouh M, Tetreault N, Barabino A, Wadhwa S, Bernier G. Differentiation of human embryonic stem cells into cone photoreceptors through simultaneous inhibition of BMP, TGFbeta and Wnt signaling. Development. 2015;142(19):3294–306.

    Article  CAS  PubMed  Google Scholar 

  137. Zhou Y, Tanzie C, Yan Z, Chen S, Duncan M, Gaudenz K, Li H, Seidel C, Lewis B, Moran A, Libby RT, Kiernan AE, Xie T. Notch2 regulates BMP signaling and epithelial morphogenesis in the ciliary body of the mouse eye. Proc Natl Acad Sci U S A. 2013;110(22):8966–71.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Mohan RR, Kim WJ, Chen L, Wilson SE. Bone morphogenic proteins 2 and 4 and their receptors in the adult human cornea. Invest Ophthalmol Vis Sci. 1998;39(13):2626–36.

    CAS  PubMed  Google Scholar 

  139. Shen W, Finnegan S, Lein P, Sullivan S, Slaughter M, Higgins D. Bone morphogenetic proteins regulate ionotropic glutamate receptors in human retina. Eur J Neurosci. 2004;20(8):2031–7.

    Article  PubMed  Google Scholar 

  140. Wordinger RJ, Agarwal R, Talati M, Fuller J, Lambert W, Clark AF. Expression of bone morphogenetic proteins (BMP), BMP receptors, and BMP associated proteins in human trabecular meshwork and optic nerve head cells and tissues. Mol Vis. 2002;8:241–50.

    CAS  PubMed  Google Scholar 

  141. He L, Frost MR, Siegwart JT Jr, Norton TT. Gene expression signatures in tree shrew choroid during lens-induced myopia and recovery. Exp Eye Res. 2014;123:56–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Li H, Cui D, Zhao F, Huo L, Hu J, Zeng J. BMP-2 is involved in scleral remodeling in myopia development. PLoS One. 2015;10(5):e0125219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. McGlinn AM, Baldwin DA, Tobias JW, Budak MT, Khurana TS, Stone RA. Form-deprivation myopia in chick induces limited changes in retinal gene expression. Invest Ophthalmol Vis Sci. 2007;48(8):3430–6.

    Article  PubMed  Google Scholar 

  144. Zhang Y, Liu Y, Hang A, Phan E, Wildsoet CF. Differential gene expression of BMP2 and BMP receptors in chick retina & choroid induced by imposed optical defocus. Vis Neurosci. 2016;33:E015.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Zhang Y, Liu Y, Ho C, Wildsoet CF. Effects of imposed defocus of opposite sign on temporal gene expression patterns of BMP4 and BMP7 in chick RPE. Exp Eye Res. 2013;109:98–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhang Y, Liu Y, Wildsoet CF. Bidirectional, optical sign-dependent regulation of BMP2 gene expression in chick retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2012;53(10):6072–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Li H, Wu J, Cui D, Zeng J. Retinal and choroidal expression of BMP-2 in lens-induced myopia and recovery from myopia in guinea pigs. Mol Med Rep. 2016;13(3):2671–6.

    Article  CAS  PubMed  Google Scholar 

  148. Wang Q, Xue ML, Zhao GQ, Liu MG, Ma YN, Ma Y. Form-deprivation myopia induces decreased expression of bone morphogenetic protein-2, 5 in guinea pig sclera. Int J Ophthalmol. 2015;8(1):39–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang Q, Zhao G, Xing S, Zhang L, Yang X. Role of bone morphogenetic proteins in form-deprivation myopia sclera. Mol Vis. 2011;17:647–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Hu J, Cui D, Yang X, Wang S, Hu S, Li C, Zeng J. Bone morphogenetic protein-2: a potential regulator in scleral remodeling. Mol Vis. 2008;14:2373–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Li HH, Huo LJ, Gao ZY, Zhao F, Zeng JW. Regulation of scleral fibroblast differentiation by bone morphogenetic protein-2. Int J Ophthalmol. 2014;7(1):152–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhang Y, Yang W, Hang A, Zin E, Garcia M, Li M, Wildsoet CF. BMP2 protein increases the expression of genes for inhibitor of DNA binding proteins in cultured chick scleral fibroblasts. Invest Ophthalmol Vis Sci. 2017;58(8):5472.

    Google Scholar 

  153. Cui W, Bryant MR, Sweet PM, McDonnell PJ. Changes in gene expression in response to mechanical strain in human scleral fibroblasts. Exp Eye Res. 2004;78(2):275–84.

    Article  CAS  PubMed  Google Scholar 

  154. Riddell N, Giummarra L, Hall NE, Crewther SG. Bidirectional expression of metabolic, structural, and immune pathways in early myopia and hyperopia. Front Neurosci. 2016;10:390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Stone RA, McGlinn AM, Baldwin DA, Tobias JW, Iuvone PM, Khurana TS. Image defocus and altered retinal gene expression in chick: clues to the pathogenesis of ametropia. Invest Ophthalmol Vis Sci. 2011;52(8):5765–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. de Pablo F, Perez-Villamil B, Serna J, Gonzalez-Guerrero PR, Lopez-Carranza A, de la Rosa EJ, Alemany J, Caldes T. IGF-I and the IGF-I receptor in development of nonmammalian vertebrates. Mol Reprod Dev. 1993;35(4):427–32; discussion 423–432.

    Article  PubMed  Google Scholar 

  157. Denduluri SK, Idowu O, Wang Z, Liao Z, Yan Z, Mohammed MK, Ye J, Wei Q, Wang J, Zhao L, Luu HH. Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes Dis. 2015;2(1):13–25.

    Article  CAS  PubMed  Google Scholar 

  158. Laviola L, Natalicchio A, Giorgino F. The IGF-I signaling pathway. Curr Pharm Des. 2007;13(7):663–9.

    Article  CAS  PubMed  Google Scholar 

  159. Danias J, Stylianopoulou F. Expression of IGF-I and IGF-II genes in the adult rat eye. Curr Eye Res. 1990;9(4):379–86.

    Article  CAS  PubMed  Google Scholar 

  160. Ocrant I, Valentino KL, King MG, Wimpy TH, Rosenfeld RG, Baskin DG. Localization and structural characterization of insulin-like growth factor receptors in mammalian retina. Endocrinology. 1989;125(5):2407–13.

    Article  CAS  PubMed  Google Scholar 

  161. Penha AM, Schaeffel F, Feldkaemper M. Insulin, insulin-like growth factor-1, insulin receptor, and insulin-like growth factor-1 receptor expression in the chick eye and their regulation with imposed myopic or hyperopic defocus. Mol Vis. 2011;17:1436–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Ritchey ER, Zelinka CP, Tang J, Liu J, Fischer AJ. The combination of IGF1 and FGF2 and the induction of excessive ocular growth and extreme myopia. Exp Eye Res. 2012;99:1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhu X, Wallman J. Opposite effects of glucagon and insulin on compensation for spectacle lenses in chicks. Invest Ophthalmol Vis Sci. 2009;50(1):24–36.

    Article  PubMed  Google Scholar 

  164. Martin DM, Yee D, Feldman EL. Gene expression of the insulin-like growth factors and their receptors in cultured human retinal pigment epithelial cells. Brain Res Mol Brain Res. 1992;12(1–3):181–6.

    Article  CAS  PubMed  Google Scholar 

  165. Takagi H, Yoshimura N, Tanihara H, Honda Y. Insulin-like growth factor-related genes, receptors, and binding proteins in cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1994;35(3):916–23.

    CAS  PubMed  Google Scholar 

  166. Waldbillig RJ, Pfeffer BA, Schoen TJ, Adler AA, Shen-Orr Z, Scavo L, LeRoith D, Chader GJ. Evidence for an insulin-like growth factor autocrine-paracrine system in the retinal photoreceptor-pigment epithelial cell complex. J Neurochem. 1991;57(5):1522–33.

    Article  CAS  PubMed  Google Scholar 

  167. Sternfeld MD, Robertson JE, Shipley GD, Tsai J, Rosenbaum JT. Cultured human retinal pigment epithelial cells express basic fibroblast growth factor and its receptor. Curr Eye Res. 1989;8(10):1029–37.

    Article  CAS  PubMed  Google Scholar 

  168. Rohrer B, Tao J, Stell WK. Basic fibroblast growth factor, its high- and low-affinity receptors, and their relationship to form-deprivation myopia in the chick. Neuroscience. 1997;79(3):775–87.

    Article  CAS  PubMed  Google Scholar 

  169. Mao J, Liu S, Wen D, Tan X, Fu C. Basic fibroblast growth factor suppresses retinal neuronal apoptosis in form-deprivation myopia in chicks. Curr Eye Res. 2006;31(11):983–7.

    Article  CAS  PubMed  Google Scholar 

  170. Tian XD, Cheng YX, Liu GB, Guo SF, Fan CL, Zhan LH, Xu YC. Expressions of type I collagen, alpha2 integrin and beta1 integrin in sclera of guinea pig with defocus myopia and inhibitory effects of bFGF on the formation of myopia. Int J Ophthalmol. 2013;6(1):54–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhang Y, Wildsoet CF. RPE and choroid mechanisms underlying ocular growth and myopia. Prog Mol Biol Transl Sci. 2015;134:221–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Chakraborty R, Pardue MT. Molecular and biochemical aspects of the retina on refraction. Prog Mol Biol Transl Sci. 2015;134:249–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Feldkaemper M, Schaeffel F. An updated view on the role of dopamine in myopia. Exp Eye Res. 2013;114:106–19.

    Article  CAS  PubMed  Google Scholar 

  174. Zhou X, Pardue MT, Iuvone PM, Qu J. Dopamine signaling and myopia development: what are the key challenges. Prog Retin Eye Res. 2017;61:60–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Djamgoz MB, Wagner HJ. Localization and function of dopamine in the adult vertebrate retina. Neurochem Int. 1992;20(2):139–91.

    Article  CAS  PubMed  Google Scholar 

  176. Nguyen-Legros J, Versaux-Botteri C, Vernier P. Dopamine receptor localization in the mammalian retina. Mol Neurobiol. 1999;19(3):181–204.

    Article  CAS  PubMed  Google Scholar 

  177. Reis RA, Ventura AL, Kubrusly RC, de Mello MC, de Mello FG. Dopaminergic signaling in the developing retina. Brain Res Rev. 2007;54(1):181–8.

    Article  CAS  PubMed  Google Scholar 

  178. Vallone D, Picetti R, Borrelli E. Structure and function of dopamine receptors. Neurosci Biobehav Rev. 2000;24(1):125–32.

    Article  CAS  PubMed  Google Scholar 

  179. Bergen MA, Park HN, Chakraborty R, Landis EG, Sidhu C, He L, Iuvone PM, Pardue MT. Altered refractive development in mice with reduced levels of retinal dopamine. Invest Ophthalmol Vis Sci. 2016;57(10):4412–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Dong F, Zhi Z, Pan M, Xie R, Qin X, Lu R, Mao X, Chen JF, Willcox MD, Qu J, Zhou X. Inhibition of experimental myopia by a dopamine agonist: different effectiveness between form deprivation and hyperopic defocus in guinea pigs. Mol Vis. 2011;17:2824–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Guo SS, Sivak JG, Callender MG, Diehl-Jones B. Retinal dopamine and lens-induced refractive errors in chicks. Curr Eye Res. 1995;14(5):385–9.

    Article  CAS  PubMed  Google Scholar 

  182. Huang F, Zhang L, Wang Q, Yang Y, Li Q, Wu Y, Chen J, Qu J, Zhou X. Dopamine D1 receptors contribute critically to the apomorphine-induced inhibition of form-deprivation myopia in mice. Invest Ophthalmol Vis Sci. 2018;59(6):2623–34.

    Article  CAS  PubMed  Google Scholar 

  183. Iuvone PM, Tigges M, Fernandes A, Tigges J. Dopamine synthesis and metabolism in rhesus monkey retina: development, aging, and the effects of monocular visual deprivation. Vis Neurosci. 1989;2(5):465–71.

    Article  CAS  PubMed  Google Scholar 

  184. Iuvone PM, Tigges M, Stone RA, Lambert S, Laties AM. Effects of apomorphine, a dopamine receptor agonist, on ocular refraction and axial elongation in a primate model of myopia. Invest Ophthalmol Vis Sci. 1991;32(5):1674–7.

    CAS  PubMed  Google Scholar 

  185. Jiang L, Long K, Schaeffel F, Zhou X, Zheng Y, Ying H, Lu F, Stell WK, Qu J. Effects of dopaminergic agents on progression of naturally occurring myopia in albino guinea pigs (Cavia porcellus). Invest Ophthalmol Vis Sci. 2014;55(11):7508–19.

    Article  CAS  PubMed  Google Scholar 

  186. Li XX, Schaeffel F, Kohler K, Zrenner E. Dose-dependent effects of 6-hydroxy dopamine on deprivation myopia, electroretinograms, and dopaminergic amacrine cells in chickens. Vis Neurosci. 1992;9(5):483–92.

    Article  CAS  PubMed  Google Scholar 

  187. Mao J, Liu S, Qin W, Li F, Wu X, Tan Q. Levodopa inhibits the development of form-deprivation myopia in guinea pigs. Optom Vis Sci. 2010;87(1):53–60.

    Article  PubMed  Google Scholar 

  188. McBrien NA, Cottriall CL, Annies R. Retinal acetylcholine content in normal and myopic eyes: a role in ocular growth control? Vis Neurosci. 2001;18(4):571–80.

    Article  CAS  PubMed  Google Scholar 

  189. McCarthy CS, Megaw P, Devadas M, Morgan IG. Dopaminergic agents affect the ability of brief periods of normal vision to prevent form-deprivation myopia. Exp Eye Res. 2007;84(1):100–7.

    Article  CAS  PubMed  Google Scholar 

  190. Nickla DL, Totonelly K. Dopamine antagonists and brief vision distinguish lens-induced- and form-deprivation-induced myopia. Exp Eye Res. 2011;93(5):782–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Nickla DL, Totonelly K, Dhillon B. Dopaminergic agonists that result in ocular growth inhibition also elicit transient increases in choroidal thickness in chicks. Exp Eye Res. 2010;91(5):715–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Rohrer B, Spira AW, Stell WK. Apomorphine blocks form-deprivation myopia in chickens by a dopamine D2-receptor mechanism acting in retina or pigmented epithelium. Vis Neurosci. 1993;10(3):447–53.

    Article  CAS  PubMed  Google Scholar 

  193. Schaeffel F, Bartmann M, Hagel G, Zrenner E. Studies on the role of the retinal dopamine/melatonin system in experimental refractive errors in chickens. Vis Res. 1995;35(9):1247–64.

    Article  CAS  PubMed  Google Scholar 

  194. Schaeffel F, Hagel G, Bartmann M, Kohler K, Zrenner E. 6-Hydroxy dopamine does not affect lens-induced refractive errors but suppresses deprivation myopia. Vis Res. 1994;34(2):143–9.

    Article  CAS  PubMed  Google Scholar 

  195. Schmid KL, Wildsoet CF. Inhibitory effects of apomorphine and atropine and their combination on myopia in chicks. Optom Vis Sci. 2004;81(2):137–47.

    Article  PubMed  Google Scholar 

  196. Stone RA, Lin T, Laties AM, Iuvone PM. Retinal dopamine and form-deprivation myopia. Proc Natl Acad Sci U S A. 1989;86(2):704–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Ward AH, Siegwart JT, Frost MR, Norton TT. Intravitreally-administered dopamine D2-like (and D4), but not D1-like, receptor agonists reduce form-deprivation myopia in tree shrews. Vis Neurosci. 2017;34:E003.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Pendrak K, Nguyen T, Lin T, Capehart C, Zhu X, Stone RA. Retinal dopamine in the recovery from experimental myopia. Curr Eye Res. 1997;16(2):152–7.

    Article  CAS  PubMed  Google Scholar 

  199. Cohen Y, Peleg E, Belkin M, Polat U, Solomon AS. Ambient illuminance, retinal dopamine release and refractive development in chicks. Exp Eye Res. 2012;103:33–40.

    Article  CAS  PubMed  Google Scholar 

  200. Rohrer B, Stell WK. Localization of putative dopamine D2-like receptors in the chick retina, using in situ hybridization and immunocytochemistry. Brain Res. 1995;695(2):110–6.

    Article  CAS  PubMed  Google Scholar 

  201. Versaux-Botteri C, Gibert JM, Nguyen-Legros J, Vernier P. Molecular identification of a dopamine D1b receptor in bovine retinal pigment epithelium. Neurosci Lett. 1997;237(1):9–12.

    Article  CAS  PubMed  Google Scholar 

  202. Gallemore RP, Steinberg RH. Effects of dopamine on the chick retinal pigment epithelium. Membrane potentials and light-evoked responses. Invest Ophthalmol Vis Sci. 1990;31(1):67–80.

    CAS  PubMed  Google Scholar 

  203. Seko Y, Tanaka Y, Tokoro T. Apomorphine inhibits the growth-stimulating effect of retinal pigment epithelium on scleral cells in vitro. Cell Biochem Funct. 1997;15(3):191–6.

    Article  CAS  PubMed  Google Scholar 

  204. McKay BS, Goodman B, Falk T, Sherman SJ. Retinal pigment epithelial cell transplantation could provide trophic support in Parkinson’s disease: results from an in vitro model system. Exp Neurol. 2006;201(1):234–43.

    Article  CAS  PubMed  Google Scholar 

  205. Ming M, Li X, Fan X, Yang D, Li L, Chen S, Gu Q, Le W. Retinal pigment epithelial cells secrete neurotrophic factors and synthesize dopamine: possible contribution to therapeutic effects of RPE cell transplantation in Parkinson’s disease. J Transl Med. 2009;7:53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Ford KJ, Feller MB. Assembly and disassembly of a retinal cholinergic network. Vis Neurosci. 2012;29(1):61–71.

    Article  PubMed  Google Scholar 

  207. Hutchins JB. Acetylcholine as a neurotransmitter in the vertebrate retina. Exp Eye Res. 1987;45(1):1–38.

    Article  CAS  PubMed  Google Scholar 

  208. Conley M, Fitzpatrick D, Lachica EA. Laminar asymmetry in the distribution of choline acetyltransferase-immunoreactive neurons in the retina of the tree shrew (Tupaia belangeri). Brain Res. 1986;399(2):332–8.

    Article  CAS  PubMed  Google Scholar 

  209. Millar TJ, Ishimoto I, Chubb IW, Epstein ML, Johnson CD, Morgan IG. Cholinergic amacrine cells of the chicken retina: a light and electron microscope immunocytochemical study. Neuroscience. 1987;21(3):725–43.

    Article  CAS  PubMed  Google Scholar 

  210. Schwahn HN, Kaymak H, Schaeffel F. Effects of atropine on refractive development, dopamine release, and slow retinal potentials in the chick. Vis Neurosci. 2000;17(2):165–76.

    Article  CAS  PubMed  Google Scholar 

  211. Marritt AM, Cox BC, Yasuda RP, McIntosh JM, Xiao Y, Wolfe BB, Kellar KJ. Nicotinic cholinergic receptors in the rat retina: simple and mixed heteromeric subtypes. Mol Pharmacol. 2005;68(6):1656–68.

    Article  CAS  PubMed  Google Scholar 

  212. Mitchelson F. Muscarinic receptor agonists and antagonists: effects on ocular function. Handb Exp Pharmacol. 2012;208:263–98.

    Article  CAS  Google Scholar 

  213. Friedman Z, Hackett SF, Campochiaro PA. Human retinal pigment epithelial cells possess muscarinic receptors coupled to calcium mobilization. Brain Res. 1988;446(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  214. Matsumoto H, Shibasaki K, Uchigashima M, Koizumi A, Kurachi M, Moriwaki Y, Misawa H, Kawashima K, Watanabe M, Kishi S, Ishizaki Y. Localization of acetylcholine-related molecules in the retina: implication of the communication from photoreceptor to retinal pigment epithelium. PLoS One. 2012;7(8):e42841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Osborne NN, FitzGibbon F, Schwartz G. Muscarinic acetylcholine receptor-mediated phosphoinositide turnover in cultured human retinal pigment epithelium cells. Vis Res. 1991;31(7–8):1119–27.

    Article  CAS  PubMed  Google Scholar 

  216. Salceda R. Muscarinic receptors binding in retinal pigment epithelium during rat development. Neurochem Res. 1994;19(9):1207–10.

    Article  CAS  PubMed  Google Scholar 

  217. Barathi VA, Beuerman RW. Molecular mechanisms of muscarinic receptors in mouse scleral fibroblasts: prior to and after induction of experimental myopia with atropine treatment. Mol Vis. 2011;17:680–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Bedrossian RH. The effect of atropine on myopia. Ophthalmology. 1979;86(5):713–9.

    Article  CAS  PubMed  Google Scholar 

  219. Chua WH, Balakrishnan V, Chan YH, Tong L, Ling Y, Quah BL, Tan D. Atropine for the treatment of childhood myopia. Ophthalmology. 2006;113(12):2285–91.

    Article  PubMed  Google Scholar 

  220. Cottriall CL, McBrien NA, Annies R, Leech EM. Prevention of form-deprivation myopia with pirenzepine: a study of drug delivery and distribution. Ophthalmic Physiol Opt. 1999;19(4):327–35.

    Article  CAS  PubMed  Google Scholar 

  221. Leech EM, Cottriall CL, McBrien NA. Pirenzepine prevents form deprivation myopia in a dose dependent manner. Ophthalmic Physiol Opt. 1995;15(5):351–6.

    Article  CAS  PubMed  Google Scholar 

  222. McBrien NA, Moghaddam HO, Reeder AP. Atropine reduces experimental myopia and eye enlargement via a nonaccommodative mechanism. Invest Ophthalmol Vis Sci. 1993;34(1):205–15.

    CAS  PubMed  Google Scholar 

  223. Rickers M, Schaeffel F. Dose-dependent effects of intravitreal pirenzepine on deprivation myopia and lens-induced refractive errors in chickens. Exp Eye Res. 1995;61(4):509–16.

    Article  CAS  PubMed  Google Scholar 

  224. Stone RA, Lin T, Laties AM. Muscarinic antagonist effects on experimental chick myopia. Exp Eye Res. 1991;52(6):755–8.

    Article  CAS  PubMed  Google Scholar 

  225. Tong L, Huang XL, Koh AL, Zhang X, Tan DT, Chua WH. Atropine for the treatment of childhood myopia: effect on myopia progression after cessation of atropine. Ophthalmology. 2009;116(3):572–9.

    Article  PubMed  Google Scholar 

  226. Luft WA, Ming Y, Stell WK. Variable effects of previously untested muscarinic receptor antagonists on experimental myopia. Invest Ophthalmol Vis Sci. 2003;44(3):1330–8.

    Article  PubMed  Google Scholar 

  227. Carr BJ, Mihara K, Ramachandran R, Saifeddine M, Nathanson NM, Stell WK, Hollenberg MD. Myopia-inhibiting concentrations of muscarinic receptor antagonists block activation of alpha2A-adrenoceptors in vitro. Invest Ophthalmol Vis Sci. 2018;59(7):2778–91.

    Article  CAS  PubMed  Google Scholar 

  228. Carr BJ, Stell WK. Nitric oxide (NO) mediates the inhibition of form-deprivation myopia by atropine in chicks. Sci Rep. 2016;6(1):9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. McBrien NA, Stell WK, Carr B. How does atropine exert its anti-myopia effects? Ophthalmic Physiol Opt. 2013;33(3):373–8.

    Article  PubMed  Google Scholar 

  230. Lind GJ, Chew SJ, Marzani D, Wallman J. Muscarinic acetylcholine receptor antagonists inhibit chick scleral chondrocytes. Invest Ophthalmol Vis Sci. 1998;39(12):2217–31.

    CAS  PubMed  Google Scholar 

  231. Nickla DL, Zhu X, Wallman J. Effects of muscarinic agents on chick choroids in intact eyes and eyecups: evidence for a muscarinic mechanism in choroidal thinning. Ophthalmic Physiol Opt. 2013;33(3):245–56.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Stone RA, Sugimoto R, Gill AS, Liu J, Capehart C, Lindstrom JM. Effects of nicotinic antagonists on ocular growth and experimental myopia. Invest Ophthalmol Vis Sci. 2001;42(3):557–65.

    CAS  PubMed  Google Scholar 

  233. Bell GI. The glucagon superfamily: precursor structure and gene organization. Peptides. 1986;7(Suppl 1):27–36.

    Article  CAS  PubMed  Google Scholar 

  234. Ekman R, Tornqvist K. Glucagon and VIP in the retina. Invest Ophthalmol Vis Sci. 1985;26(10):1405–9.

    CAS  PubMed  Google Scholar 

  235. Fischer AJ, Skorupa D, Schonberg DL, Walton NA. Characterization of glucagon-expressing neurons in the chicken retina. J Comp Neurol. 2006;496(4):479–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Fukuda M, Yeh HH, Puro DG. A vasoactive intestinal polypeptide system in retinal cell cultures: immunocytochemistry and physiology. Brain Res. 1987;414(1):177–81.

    Article  CAS  PubMed  Google Scholar 

  237. Buck C, Schaeffel F, Simon P, Feldkaemper M. Effects of positive and negative lens treatment on retinal and choroidal glucagon and glucagon receptor mRNA levels in the chicken. Invest Ophthalmol Vis Sci. 2004;45(2):402–9.

    Article  PubMed  Google Scholar 

  238. Koh SM. VIP enhances the differentiation of retinal pigment epithelium in culture: from cAMP and pp60(c-src) to melanogenesis and development of fluid transport capacity. Prog Retin Eye Res. 2000;19(6):669–88.

    Article  CAS  PubMed  Google Scholar 

  239. Koh SW. VIP stimulation of polarized macromolecule secretion in cultured chick embryonic retinal pigment epithelium. Exp Cell Res. 1991;197(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  240. Koh SW, Chader GJ. Elevation of intracellular cyclic AMP and stimulation of adenylate cyclase activity by vasoactive intestinal peptide and glucagon in the retinal pigment epithelium. J Neurochem. 1984;43(6):1522–6.

    Article  CAS  PubMed  Google Scholar 

  241. Fischer AJ, McGuire JJ, Schaeffel F, Stell WK. Light- and focus-dependent expression of the transcription factor ZENK in the chick retina. Nat Neurosci. 1999;2(8):706–12.

    Article  CAS  PubMed  Google Scholar 

  242. Feldkaemper MP, Wang HY, Schaeffel F. Changes in retinal and choroidal gene expression during development of refractive errors in chicks. Invest Ophthalmol Vis Sci. 2000;41(7):1623–8.

    CAS  PubMed  Google Scholar 

  243. Ashby R, Kozulin P, Megaw PL, Morgan IG. Alterations in ZENK and glucagon RNA transcript expression during increased ocular growth in chickens. Mol Vis. 2010;16:639–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Feldkaemper MP, Schaeffel F. Evidence for a potential role of glucagon during eye growth regulation in chicks. Vis Neurosci. 2002;19(6):755–66.

    Article  PubMed  Google Scholar 

  245. Vessey KA, Lencses KA, Rushforth DA, Hruby VJ, Stell WK. Glucagon receptor agonists and antagonists affect the growth of the chick eye: a role for glucagonergic regulation of emmetropization? Invest Ophthalmol Vis Sci. 2005;46(11):3922–31.

    Article  PubMed  Google Scholar 

  246. Vessey KA, Rushforth DA, Stell WK. Glucagon- and secretin-related peptides differentially alter ocular growth and the development of form-deprivation myopia in chicks. Invest Ophthalmol Vis Sci. 2005;46(11):3932–42.

    Article  PubMed  Google Scholar 

  247. Stone RA, Laties AM, Raviola E, Wiesel TN. Increase in retinal vasoactive intestinal polypeptide after eyelid fusion in primates. Proc Natl Acad Sci U S A. 1988;85(1):257–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Tkatchenko AV, Walsh PA, Tkatchenko TV, Gustincich S, Raviola E. Form deprivation modulates retinal neurogenesis in primate experimental myopia. Proc Natl Acad Sci U S A. 2006;103(12):4681–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Seltner RL, Stell WK. The effect of vasoactive intestinal peptide on development of form deprivation myopia in the chick: a pharmacological and immunocytochemical study. Vis Res. 1995;35(9):1265–70.

    Article  CAS  PubMed  Google Scholar 

  250. Mathis U, Schaeffel F. Glucagon-related peptides in the mouse retina and the effects of deprivation of form vision. Graefes Arch Clin Exp Ophthalmol. 2007;245(2):267–75.

    Article  CAS  PubMed  Google Scholar 

  251. Marmor MF. Control of subretinal fluid: experimental and clinical studies. Eye (Lond). 1990;4(Pt 2):340–4.

    Article  Google Scholar 

  252. Wimmers S, Karl MO, Strauss O. Ion channels in the RPE. Prog Retin Eye Res. 2007;26(3):263–301.

    Article  CAS  PubMed  Google Scholar 

  253. Crewther SG, Liang H, Junghans BM, Crewther DP. Ionic control of ocular growth and refractive change. Proc Natl Acad Sci U S A. 2006;103(42):15663–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Liang H, Crewther SG, Crewther DP, Junghans BM. Structural and elemental evidence for edema in the retina, retinal pigment epithelium, and choroid during recovery from experimentally induced myopia. Invest Ophthalmol Vis Sci. 2004;45(8):2463–74.

    Article  PubMed  Google Scholar 

  255. Crewther SG, Murphy MJ, Crewther DP. Potassium channel and NKCC cotransporter involvement in ocular refractive control mechanisms. PLoS One. 2008;3(7):e2839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Zhang H, Wong CL, Shan SW, Li KK, Cheng AK, Lee KL, Ge J, To CH, Do CW. Characterisation of Cl(−) transporter and channels in experimentally induced myopic chick eyes. Clin Exp Optom. 2011;94(6):528–35.

    Article  PubMed  Google Scholar 

  257. Harman AM, Hoskins R, Beazley LD. Experimental eye enlargement in mature animals changes the retinal pigment epithelium. Vis Neurosci. 1999;16(4):619–28.

    Article  CAS  PubMed  Google Scholar 

  258. Lin T, Grimes PA, Stone RA. Expansion of the retinal pigment epithelium in experimental myopia. Vis Res. 1993;33(14):1881–5.

    Article  CAS  PubMed  Google Scholar 

  259. Hou X, Han QH, Hu D, Tian L, Guo CM, Du HJ, Zhang P, Wang YS, Hui YN. Mechanical force enhances MMP-2 activation via p38 signaling pathway in human retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol. 2009;247(11):1477–86.

    Article  CAS  PubMed  Google Scholar 

  260. Seko Y, Fujikura H, Pang J, Tokoro T, Shimokawa H. Induction of vascular endothelial growth factor after application of mechanical stress to retinal pigment epithelium of the rat in vitro. Invest Ophthalmol Vis Sci. 1999;40(13):3287–91.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Kyoko Ohno-Matsui (Tokyo Medical and Dental University, Tokyo, Japan) for providing fundus and OCT images from a myopic patient with patchy chorioretinal atrophy, Sara Yasmin Azmoun (University of California, Berkeley, CA) for her assistance with manuscript preparation, and funding support from National Eye Institute Grants R01 EY012392 (C. F. W.), K08 EY023609 (Y. Z.), and K12 EY017269 (Y. Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine F. Wildsoet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Wildsoet, C.F. (2020). The RPE in Myopia Development. In: Klettner, A., Dithmar, S. (eds) Retinal Pigment Epithelium in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-28384-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28384-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28383-4

  • Online ISBN: 978-3-030-28384-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics