Skip to main content

Graph-Based Crowd Definition for Assessing Wise Crowd Measures

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2019)

Abstract

Research in the field of collective intelligence is currently focused mainly on determining ways to provide a more and more accurate prediction. However, the development of collective intelligence requires a more formal approach. Thus the natural next step is to introduce the formal model of collective. Many scientists seem to see this need, but available solutions usually focus on narrow specialization. The problems within the scope of collective intelligence field typically require complex models. Sometimes more than one model has to be used. This paper addresses both issues. Authors introduce graph-based meta-model of collective that intend to describe all collective’s properties based on psychological knowledge, especially on Surowiecki’s work. Moreover, we introduced the taxonomy of metrics that allow assessing the qualitative aspects of crowd’s structure and dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Without any consequent loss of knowledge to agent i.

References

  1. Bates, T.C., Gupta, S.: Smart groups of smart people: evidence for IQ as the origin of collective intelligence in the performance of human groups. Intelligence 60, 46–56 (2017)

    Article  Google Scholar 

  2. Chatterjee, S., Seneta, E.: Towards consensus: some convergence theorems on repeated averaging. J. Appl. Probab. 14(1), 89–97 (1977)

    Article  MathSciNet  Google Scholar 

  3. Cowan, R., Jonard, N.: The dynamics of collective invention. J. Econ. Behav. Organ. 52(4), 513–532 (2003)

    Article  Google Scholar 

  4. DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)

    Article  Google Scholar 

  5. DeMarzo, P.M., Vayanos, D., Zwiebel, J.: Persuasion bias, social influence, and unidimensional opinions. Q. J. Econ. 118(3), 909–968 (2003)

    Article  Google Scholar 

  6. Golub, B., Jackson, M.O.: Naive learning in social networks and the wisdom of crowds. Am. Econ. J. Microecon. 2(1), 112–149 (2010)

    Article  Google Scholar 

  7. Lévy, P.: From social computing to reflexive collective intelligence: The IEML research program. Inf. Sci. 180(1), 71–94 (2010)

    Article  Google Scholar 

  8. Lorenz, J.: A stabilization theorem for dynamics of continuous opinions. Physica A Stat. Mech. Appl. 355(1), 217–223 (2005)

    Article  MathSciNet  Google Scholar 

  9. Malone, T.W., Bernstein, M.S.: Handbook of Collective Intelligence. MIT Press, Cambridge (2015)

    Google Scholar 

  10. Nurmi, H.: Some properties of the Lehrer-Wagner method for reaching rational consensus. Synthese 62(1), 13–24 (1985)

    Article  MathSciNet  Google Scholar 

  11. Palak, R., Nguyen, N.T.: Prediction markets as a vital part of collective intelligence. In: 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA), pp. 137–142. IEEE (2017)

    Google Scholar 

  12. Palak, R., Nguyen, N.T.: An independence measure for expert collections based on social media profiles. In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS (LNAI), vol. 11432, pp. 15–25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14802-7_2

    Chapter  Google Scholar 

  13. Pereira, C., Sousa, C., Lucas Soares, A.: A socio-semantic approach to collaborative domain conceptualization. In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009. LNCS, vol. 5872, pp. 524–533. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05290-3_66

    Chapter  Google Scholar 

  14. Schmitt, F.F.: Consensus, respect, and weighted averaging. Synthese 62(1), 25–46 (1985)

    Article  Google Scholar 

  15. Surowiecki, J.: The Wisdom of Crowds. Anchor (2005)

    Google Scholar 

  16. Wagner, C.: Consensus through respect: a model of rational group decision-making. Philos. Stud. 34(4), 335–349 (1978)

    Article  MathSciNet  Google Scholar 

  17. Woolley, A.W., Chabris, C.F., Pentland, A., Hashmi, N., Malone, T.W.: Evidence for a collective intelligence factor in the performance of human groups. Science 330(6004), 686–688 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcin Jodłowiec , Marek Krótkiewicz , Rafał Palak or Krystian Wojtkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jodłowiec, M., Krótkiewicz, M., Palak, R., Wojtkiewicz, K. (2019). Graph-Based Crowd Definition for Assessing Wise Crowd Measures. In: Nguyen, N., Chbeir, R., Exposito, E., Aniorté, P., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2019. Lecture Notes in Computer Science(), vol 11683. Springer, Cham. https://doi.org/10.1007/978-3-030-28377-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28377-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28376-6

  • Online ISBN: 978-3-030-28377-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics