Skip to main content

The Cycle Time Determination for a Soft Real-Time System

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11684))

Included in the following conference series:

  • 1768 Accesses

Abstract

Nowadays many Internet of Things solutions used embedded systems that are not equipped with real-time clock. Some of them are used in Unmanned Ground Vehicle platforms that require precise measurements and calculations to move properly and safely. Often such systems are realised as soft real-time Linux systems equipped with real-time path. To improve quality of such systems it is necessary to determine a minimum cycle of time that will allow a stable work of embedded system. In this paper, the authors focus on approaches to verify the performance of Rasbian system in various use cases to obtain a minimum jitter and duration of cycle time for real–time applications that requires a guaranteed response within strict timing constraints of UGV. Additionally, was described a simple approach to determine a minimum cycle time period for a soft real-time system implemented on Raspberry Pi3 based on the maximum confidence interval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cyber-Physical Systems (CPS) (NSF17529) | NSF - National Science Foundation. https://www.nsf.gov/pubs/2017/nsf17529/nsf17529.htm

  2. Wu, F.-J., Kao, Y.-F., Tseng, Y.-C.: From wireless sensor networks towards cyber physical systems. Pervasive Mobile Comput. 7, 397–413 (2011). https://doi.org/10.1016/j.pmcj.2011.03.003

    Article  Google Scholar 

  3. Wang, Y., Vuran, M.C., Goddard, S.: Cyber-physical systems in industrial process control. ACM SIGBED Rev. 5, 1–2 (2008). https://doi.org/10.1145/1366283.1366295

    Article  Google Scholar 

  4. Ziebinski, A., Bregulla, M., Fojcik, M., Kłak, S.: Monitoring and controlling speed for an autonomous mobile platform based on the hall sensor. In: Nguyen, N.T., Papadopoulos, G.A., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds.) ICCCI 2017. LNCS (LNAI), vol. 10449, pp. 249–259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67077-5_24

    Chapter  Google Scholar 

  5. Cupek, R., Huczala, L.: Passive PROFIET I/O OPC DA Server. Presented at the IEEE Conference on Emerging Technologies & Factory Automation. ETFA 2009 (2009)

    Google Scholar 

  6. Kobylecki, M., Kania, D.: FPGA implementation of bit controller in double-tick architecture. Presented at the AIP Conference Proceedings (2017). https://doi.org/10.1063/1.5012400

  7. Li, R., Liu, C., Luo, F.: A design for automotive CAN bus monitoring system, September (2008). https://doi.org/10.1109/VPPC.2008.4677544

  8. Jazdi, N.: Cyber physical systems in the context of Industry 4.0. Presented at the 2014 IEEE International Conference on Automation, Quality and Testing, Robotics, May 2014. https://doi.org/10.1109/AQTR.2014.6857843

  9. Baheti, R., Gill, H.: Cyber-physical systems. the impact of control technology. IEEE Control Syst. Soc. 12, 161–166 (2011)

    Google Scholar 

  10. Buk, B., Mrozek, D., Małysiak-Mrozek, B.: Remote video verification and video surveillance on android-based mobile devices. In: Gruca, D.A., Czachórski, T., Kozielski, S. (eds.) Man-Machine Interactions 3. AISC, vol. 242, pp. 547–557. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02309-0_60

    Chapter  Google Scholar 

  11. Shafiq, S.I., Sanin, C., Szczerbicki, E., Toro, C.: Virtual engineering object/virtual engineering process: a specialized form of cyber physical system for Industrie 4.0. Procedia Comput. Sci. 60, 1146–1155 (2015). https://doi.org/10.1016/j.procs.2015.08.166

    Article  Google Scholar 

  12. Marwedel, P.: Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems. Springer, Netherlands (2010). https://doi.org/10.1007/978-94-007-0257-8

    Book  Google Scholar 

  13. Grzechca, D., Ziębiński, A., Rybka, P.: Enhanced reliability of ADAS sensors based on the observation of the power supply current and neural network application. In: Nguyen, N.T., Papadopoulos, G.A., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds.) ICCCI 2017. LNCS (LNAI), vol. 10449, pp. 215–226. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67077-5_21

    Chapter  Google Scholar 

  14. Ji, Z., Ganchev, I., O’Droma, M., Zhao, L., Zhang, X.: A cloud-based car parking middleware for IoT-based smart cities: design and implementation. Sensors 14, 22372–22393 (2014). https://doi.org/10.3390/s141222372

    Article  Google Scholar 

  15. Fleming, W.J.: Overview of automotive sensors. IEEE Sens. J. 1, 296–308 (2001). https://doi.org/10.1109/7361.983469

    Article  Google Scholar 

  16. Bengler, K., Dietmayer, K., Farber, B., Maurer, M., Stiller, C., Winner, H.: Three decades of driver assistance systems: review and future perspectives. IEEE Intell. Transp. Syst. Mag. 6, 6–22 (2014). https://doi.org/10.1109/MITS.2014.2336271

    Article  Google Scholar 

  17. Garcia, F., Martin, D., de la Escalera, A., Armingol, J.M.: Sensor fusion methodology for vehicle detection. IEEE Intell. Transp. Syst. Mag. 9, 123–133 (2017). https://doi.org/10.1109/MITS.2016.2620398

    Article  Google Scholar 

  18. Behere, S., Törngren, M.: A functional architecture for autonomous driving. Presented at the Proceedings of the First International Workshop on Automotive Software Architecture (2015)

    Google Scholar 

  19. Jia, X., Hu, Z., Guan, H.: A new multi-sensor platform for adaptive driving assistance system (ADAS). In: 2011 9th World Congress on Intelligent Control and Automation, pp. 1224–1230 (2011). https://doi.org/10.1109/WCICA.2011.5970711

  20. Pułka, A., Milik, A.: Dynamic reconfiguration of threads in real-time system working on precision time regime. Presented at the 2010 International Conference on Signals and Electronic Systems (ICSES) (2010)

    Google Scholar 

  21. Murikipudi, A., Prakash, V., Vigneswaran, T.: Performance analysis of real time operating system with general purpose operating system for mobile robotic system. Indian J. Sci. Technol. 8, 1–6 (2015). https://doi.org/10.17485/ijst/2015/v8i19/77017

  22. Vijayakumar, N., Ramya, R.: The real time monitoring of water quality in IoT environment. In: 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), pp. 1–5. IEEE, Coimbatore (2015). https://doi.org/10.1109/ICIIECS.2015.7193080

  23. Mollison, M.S., Erickson, J.P., Anderson, J.H., Baruah, S.K., Scoredos, J.A.: Mixed-criticality real-time scheduling for multicore systems. In: 2010 10th IEEE International Conference on Computer and Information Technology, pp. 1864–1871. IEEE, Bradford (2010). https://doi.org/10.1109/CIT.2010.320

  24. Bruzzone, G., Caccia, M., Bertone, A., Ravera, G.: Standard Linux for embedded real-time manufacturing control systems. In: 2006 14th Mediterranean Conference on Control and Automation, pp. 1–6. IEEE, Ancona (2006). https://doi.org/10.1109/MED.2006.328773

  25. Sidzina, M., Kwiecien, A., Stoj, J.: Shortening of the automata cycle of industrial communication system nodes. In: Lee, G. (ed.) 2nd International Conference on Advances in Computer Science and Engineering, pp. 169–175, France (2013)

    Google Scholar 

  26. Ziebinski, A., Cupek, R., Drewniak, M., Wolny, B.: Soft real-time systems for low-cost unmanned ground vehicle. In: Nguyen, N.T., Chbeir, R., Exposito, E., Aniorte, P., Trawiński, B. (eds.): ICCCI 2019, LNAI, vol. 11684, pp. 196–206. Springer, Heidelberg (2019)

    Google Scholar 

Download references

Acknowledgements

This publication was supported as part of the Rector’s grant in the field of scientific research and development works. Silesian University of Technology, grant no. 02/020/RGJ18/0124.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Ziebinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ziebinski, A., Cupek, R., Grzechca, D. (2019). The Cycle Time Determination for a Soft Real-Time System. In: Nguyen, N., Chbeir, R., Exposito, E., Aniorté, P., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2019. Lecture Notes in Computer Science(), vol 11684. Springer, Cham. https://doi.org/10.1007/978-3-030-28374-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28374-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28373-5

  • Online ISBN: 978-3-030-28374-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics